The relationship between mitochondrial metabolism and cell viability and differentiation in stem cells (SCs) remains poorly understood. In the present study, we compared mitochondrial physiology and metabolism between P19SCs before/after differentiation and present a unique fingerprint of the association between mitochondrial activity, cell differentiation and stemness. In comparison with their differentiated counterparts, pluripotency of P19SCs was correlated with a strong glycolytic profile and decreased mitochondrial biogenesis and complexity: round, low-polarized and inactive mitochondria with a closed permeability transition pore. This decreased mitochondrial capacity increased their resistance against dichloroacetate. Thus, stimulation of mitochondrial function by growing P19SCs in glutamine/pyruvate-containing medium reduced their glycolytic phenotype, induced loss of pluripotent potential, compromised differentiation and became P19SCs sensitive to dichloroacetate. Because of the central role of this type of SCs in teratocarcinoma development, our findings highlight the importance of mitochondrial metabolism in stemness, proliferation, differentiation and chemoresistance. In addition, the present work suggests the regulation of mitochondrial metabolism as a tool for inducing cell differentiation in stem line therapies. Embryonal carcinoma cells, including the P19 cell line, are pluripotent cancer stem cells (CSCs) derived from pluripotent germ cell tumors called teratocarcinomas. These have been described as the malignant counterparts of embryonic stem cells (ESCs) and are considered a good model to study stem cell (SC) differentiation. The P19 cell line can be maintained as undifferentiated cells (P19SCs) or differentiated (P19dCs) to any cell type of the three germ layers. Similar to ESCs, P19 cells differentiate with retinoic acid (RA) in a dose-dependent manner and depending on growth conditions. 1 Although differentiation generally yields a mixed population of differentiated cells, P19 cells grown in monolayer and treated with 1 mM RA primarily differentiate in endoderm or mesoderm, while retaining their immortality.
2,3Although some therapeutic approaches for regenerative medicine and to targeting CSCs are based on differentiation 4 and mitochondrial-targeted therapies, 5,6 very little is known about the role of mitochondrial metabolism in SC maintenance and differentiation.7 Several mitochondrial characteristics that distinguish transformed cells from healthy cells have been described, 8 including increased mitochondrial transmembrane electric potential (Dcm), which may result from decreased mitochondrial ATP production under normoxia. Similarly, normal SCs primarily rely on glycolysis for energy supply, although the exact mechanism how this occurs in the presence of oxygen and the relationship between SC metabolism and cell fate control is not yet completely understood.
10Given the mitochondrial involvement in stemness and differentiation, 11 one can ask whether manipulation of mitochondrial physi...
There are several pathologies, syndromes, and physiological processes in which autophagy is involved. This process of self-digestion that cells trigger as a survival mechanism is complex and tightly regulated, according to the homeostatic conditions of the organ. However, in all cases, its relationship with oxidative stress alterations is evident, following a pathway that suggests endoplasmic reticulum stress and/ or mitochondrial changes. There is accumulating evidence of the beneficial role that melatonin has in the regulation and restoration of damaged autophagic processes. In this review, we focus on major physiological changes such as aging and essential pathologies including cancer, neurodegenerative diseases, viral infections and obesity, and document the essential role of melatonin in the regulation of autophagy in each of these different situations.
K E Y W O R D Saging, autophagy, cancer, endoplasmic reticulum stress, melatonin, mitochondria, neurodegenerative diseases, obesity, virus infection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.