The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison is based on the evaluation of a short distance approaching the goal point and on their computational complexity. As the reference method, the Jacobian pseudo-inverse is utilized. Simulation results reveal that the modified Levenberg-Marquardt method is promising, while the first order approximation method is reliable and requires mild computational costs. Some hints are formulated concerning the application of Jacobian-based methods in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.