The extreme light infrastructure attosecond light pulse source offers beamtime for users of various attosecond and particle sources driven by versatile laser systems. Here we report on the state of the art of a few-cycle, multi-TW, 1kHz repetition rate laser system, now fully operational in the facility. The system is based on four stages of optical parametric amplifiers (OPAs) pumped by a total of 320mJ, 80ps frequency-doubled Nd:YAG laser pulses. All OPA stages utilize double crystal configuration, which design has been also confirmed by model calculations. The 1kHz SYLOS 2 system produces 32mJ laser pulses around a central wavelength of 891nm with 6.6fs (<2.3 optical cycles) pulse duration exceeding the peak power of 4.8 TW on a daily basis. The recorded best pulse duration is 6.3fs, which corresponds to 2.12 cycles and 5.1 TW peak power. During long-term (24h) performance tests, energy stability of 1.2%, carrier-envelope phase (CEP) stability of 210mrad, and pointing stability of 0.4µrad were demonstrated, while the Strehl ratio of the beam is kept above 0.75. In order to help the alignment of all the different experiments at the facility and to reduce the workload on SYLOS 2 system, a second laser system has been developed. The so-called SYLOS Experimental Alignment (SEA) laser mimicks the performance of the SYLOS 2 laser, but at a repetition rate two orders of magnitude lower and without CEP-stabilization. The three single-crystal OPA stages of the SEA laser provide 42mJ pulse energy for the users, while having energy stability of 0.87% and sub-13fs pulse duration at a repetition rate ranging from a single shot up to 10Hz.
We present the results of theoretical and experimental investigation of amplified parametric fluorescence (APF) produced in a high-gain BBO-based femtosecond noncollinear optical parametric amplifier (OPA) pumped at 515 nm. Differences of APF levels in Poynting vector walk-off-compensating and tangential phase-matching amplification geometries are examined. APF suppression due to the presence of a seed pulse in the OPA is measured and is found to be around 6 times in typical OPA operating conditions when pump-to-signal conversion efficiency is 11.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.