During the liquid chromatographic study of the phenolic fraction of monofloral honeys was detected in the asphodel honey ( Asphodelus microcarpus Salzm. et Viv.) chromatogram a distinctive peak not detected in other monofloral honeys such as Arbutus unedo L., Hedysarum coronarium , Eucalyptus spp., and Galactites tomentosa . After thin layer chromatography (TLC) purification and characterization by NMR and LC-MS/MS, the compound was identified as methyl syringate (MSYR) and confirmed against an original standard. Levels of MSYR were measured in honeys of 2005, 2006, and 2007 by HPLC-DAD analysis. Level determination of MSYR was repeated in 2008 for 2006 and 2007 honeys to evaluate chemical stability of this phenolic compound. Levels of MSYR measured 1 year after the sampling did not show significant statistical differences (p < 0.05). The stability of MSYR was also confirmed by 12 asphodel honey samples collected in 2005 that showed amounts of methyl syringate comparable with those found in fresh honey. For the evaluation of MSYR origin, samples of nectars were collected from flowers and the content of MSYR was measured. Levels of MSYR in honeys are originated from the nectar with an average contribution of the nectar to the honey of 80%. Melissopalinological analysis did not allow the attribution of the honey monofloral origin because levels of asphodel pollen were <6% for all analyzed samples. Previously reported levels of MSYR for robinia, rape, chestnut, clover, linden blossom, dandelion, sunflower, thyme, manuka, and fir honeys were <5 mg/kg. For this reason, a minimum level of 122.6 mg/kg for MSYR in asphodel honeys can be considered as a chemical marker and, unlike the melissopalynological analysis, can be used for the origin attribution and to evaluate the percent of asphodel nectar in the honey.
Strawberry tree honey, due to its characteristic bitter taste, is one of the most typical Mediterranean honeys, with Sardinia being one of the largest producers. According to specific chemical studies, homogentisic acid was identified as a possible marker of this honey. This work, based on HPLC-DAD-MS/MS analysis of strawberry tree (Arbutus unedo L.) honeys, previously selected by sensory evaluation and melissopalynological analysis, showed that, in addition to the above-mentioned acid, there were other high levels of substances useful for the botanical classification of this unifloral honey. Two of these compounds were isolated and identified as (+/-)-2-cis,4-trans-abscisic acid (c,t-ABA) and (+/-)-2-trans,4-trans-abscisic acid (t,t-ABA). A third compound, a new natural product named unedone, was characterized as an epoxidic derivative of the above-mentioned acids. Structures of c,t-ABA, t,t-ABA, and unedone were elucidated on the basis of extensive 1D and 2D NMR experiments, as well as HPLC-MS/MS and Q-TOF analysis. In selected honeys the average amounts of c,t-ABA, t,t-ABA, and unedone were 176.2+/-25.4, 162.3+/-21.1, and 32.9+/-7.1 mg/kg, respectively. Analysis of the A. unedo nectar confirmed the floral origin of these compounds found in the honey. Abscisic acids were found in other unifloral honeys but not in such high amount and with a constant ratio of about 1:1. For this reason, besides homogentisic acid, these compounds could be used as complementary markers of strawberry tree honey.
An apiary trial on the use of two acaricide formulations (gel-Apiguard and vermiculite and Api Life VAR) in the control of Varroa destructor (Anderson & Trueman) was conducted in summer 2001 in Sardinia (Italy). The main goals were 1) to determine their effectiveness against V. destructor, taking into account natural mite mortality in control hives; and simultaneously 2) to determine the persistence of both formulations and residues in honey and wax, by using a new extraction method. Both thymol formulations, after the treatments, reduced significantly the levels of mite infestations of adult bees and sealed brood, but their efficacy, expressed as percentage of mortality, was lower for both products (Api Life VAR 74.8 +/- 13.1 and 81.3 +/- 15.5, Apiguard 90.4 +/- 8.3 and 95.5 +/- 8.7 for sealed brood and adult bees, respectively) than the efficacy previously obtained with the same products in other experimental conditions. Moreover, a considerable colony-to-colony variability was recorded, and a significant negative effect of the thymol treatments on colony development was observed. During 2 wk of treatment, the bees removed nearly 95% of all the applied product (gel or vermiculite). Residues found in honey collected from the nest varied from 0.12 to 4.03 mg/kg for Api Life VAR and from 0.40 to 8.80 mg/kg for Apiguard. The residues were relatively higher in wax (Api Life VAR = 21.6 +/- 13.0; Apiguard = 147.7 +/- 188.9) than in honey, because thymol is a fat-soluble ingredient.
HPLC-DAD-MS/MS chromatograms of thistle (Galactites tomentosa Moench) unifloral honeys, previously selected by sensory evaluation and melissopalynological analysis, showed high levels of two compounds. One was characterized as phenyllactic acid, a common acid found in honeys, but the other compound was very unusual for honeys. This compound was extracted from honey with ethyl acetate and purified by SPE using C(18), SiOH, and NH(2) phases. Its structure was elucidated on the basis of extensive 1D and 2D NMR experiments as well as HPLC-MS/MS and Q-TOF analysis, and it was identified as lumichrome (7,8-dimethylalloxazine). Lumichrome is known to be the main product of degradation obtained in acid medium from riboflavin (vitamin B(2)), and this is the first report of the presence of lumichrome in honeys. Analysis of the G. tomentosa raw honey and flowers extracts confirmed the floral origin of this compound. The average amount of lumichrome in thistle honey was 29.4 ± 14.9 mg/kg, while phenyllactic acid was 418.6 ± 168.9 mg/kg. Lumichrome, along with the unusual high level of phenyllactic acid, could be used as a marker for the botanical classification of unifloral thistle (G. tomentosa) honey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.