With massive explosion of social media such as Twitter and Instagram, people daily share billions of multimedia posts, containing images and text. Typically, text in these posts is short, informal and noisy, leading to ambiguities which can be resolved using images. In this paper we explore text-centric Named Entity Recognition task on these multimedia posts. We propose an end to end model which learns a joint representation of a text and an image. Our model extends multi-dimensional self attention technique, where now image help to enhance relationship between words. Experiments show that our model is capable of capturing both textual and visual contexts with greater accuracy, achieving state-of-the-art results on Twitter multimodal Named Entity Recognition dataset.• Unrelated image : Text information do not match with an image, as we can see in Fig. 8(a), "Reddit" belongs to
Abstract-Barcode reading mobile applications that identify products from pictures taken using mobile devices are widely used by customers to perform online price comparisons or to access reviews written by others. Most of the currently available barcode reading approaches focus on decoding degraded barcodes and treat the underlying barcode detection task as a side problem that can be addressed using appropriate object detection methods. However, the majority of modern mobile devices do not meet the minimum working requirements of complex general purpose object detection algorithms and most of the efficient specifically designed barcode detection algorithms require user interaction to work properly. In this paper, we present a novel method for barcode detection in camera captured images based on a supervised machine learning algorithm that identifies onedimensional barcodes in the two-dimensional Hough Transform space. Our model is angle invariant, requires no user interaction and can be executed on a modern mobile device. It achieves excellent results for two standard one-dimensional barcode datasets: WWU Muenster Barcode Database and ArTe-Lab 1D Medium Barcode Dataset. Moreover, we prove that it is possible to enhance the overall performance of a state-of-the-art barcode reading algorithm by combining it with our detection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.