Parkinson's disease is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction of dopamine concentration in the striatum. The complex interaction between genetic and environmental factors seems to play a role in determining susceptibility to PD and may explain the heterogeneity observed in clinical presentations. The exact etiology is not yet clear, but different possible causes have been identified. Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases, corroborating the hypothesis that the immune system may be the nexus between environmental and genetic factors, and the abnormal immune function can lead to disease. In this review we report the different aspects of inflammation and immune system in Parkinson's disease, with particular interest in the possible role played by immune dysfunctions in PD, with focus on autoimmunity and processes involving infectious agents as a trigger and alpha-synuclein protein (α-syn).
We evaluated the effect of DMTs on Covid‐19 severity in patients with MS, with a pooled‐analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid‐19 severity was assessed by multivariate ordinal‐logistic models and pooled by a fixed‐effect meta‐analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti‐CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid‐19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled‐analysis confirms an increased risk of severe Covid‐19 in patients on anti‐CD20 therapies and supports the protective role of interferon.
ObjectivesVaccination against COVID-19 is highly recommended to patients affected by multiple sclerosis (MS); however, the impact of MS disease-modifying therapies (DMTs) on the immune response following vaccination has been only partially investigated. Here, we aimed to elucidate the effect of DMTs on the humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines in MS patients.MethodsWe obtained sera from 912 Sardinian MS patients and 63 healthy controls 30 days after the second dose of BNT162b2 vaccine and tested them for SARS-CoV-2 response using anti-Spike (S) protein-based serology. Previous SARS-CoV-2 infection was assessed by anti-Nucleocapsid (N) serology. Patients were either untreated or undergoing treatment with a total of 13 different DMTs. Differences between treatment groups comprised of at least 10 patients were assessed by generalized linear mixed-effects model. Demographic and clinical data and smoking status were analyzed as additional factors potentially influencing humoral immunity from COVID-19 vaccine.ResultsMS patients treated with natalizumab, teriflunomide, azathioprine, fingolimod, ocrelizumab, and rituximab showed significantly lower humoral responses compared to untreated patients. We did not observe a statistically significant difference in response between patients treated with the other drugs (dimethyl fumarate, interferon, alemtuzumab and glatiramer acetate) and untreated patients. In addition, older age, male sex and active smoking were significantly associated with lower antibody titers against SARS-CoV-2. MS patients previously infected with SARS-CoV-2 had significantly higher humoral responses to vaccine than uninfected patients.ConclusionHumoral response to BNT162b2 is significantly influenced by the specific DMTs followed by patients, as well as by other factors such as previous SARS-CoV-2 infection, age, sex, and smoking status. These results are important to inform targeted strategies to prevent clinically relevant COVID-19 in MS patients.
Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.