The use of antineoplastic drugs has a central role in treatment of patients affected by cancer but is often associated with numerous electrolyte derangements which, in many cases, could represent life-threatening conditions. In fact, while several anti-cancer agents can interfere with kidney function leading to acute kidney injury, proteinuria, and hypertension, in many cases alterations of electrolyte tubular handling and water balance occur. This review summarizes the mechanisms underlying the disturbances of sodium, potassium, magnesium, calcium, and phosphate metabolism during anti-cancer treatment. Platinum compounds are associated with sodium, potassium, and magnesium derangements while alkylating agents and Vinca alkaloids with hyponatremia due to syndrome of inappropriate antidiuretic hormone secretion (SIADH). Novel anti-neoplastic agents, such as targeted therapies (monoclonal antibodies, tyrosine kinase inhibitors, immunomodulators, mammalian target of rapamycin), can induce SIADH-related hyponatremia and, less frequently, urinary sodium loss. The blockade of epidermal growth factor receptor (EGFR) by anti-EGFR antibodies can result in clinically significant magnesium and potassium losses. Finally, the tumor lysis syndrome is associated with hyperphosphatemia, hypocalcemia and hyperkalemia, all of which represent serious complications of chemotherapy. Thus, clinicians should be aware of these side effects of antineoplastic drugs, in order to set out preventive measures and start appropriate treatments.
Excessive or inappropriate use of non-steroidal anti-inflammatory drugs can affect cardiovascular and renal function. Non-steroidal anti-inflammatory drugs, both non-selective and selective cyclooxygenase 2 inhibitors, are among the most widely used drugs, especially in the elderly, with multiple comorbidities. Exposition to a polypharmacy burden represents a favourable substrate for the onset of non-steroidal anti-inflammatory drug-induced deleterious effects. Cardiovascular and renal issues concerning the occurrence of myocardial infarction, atrial fibrillation, heart failure and arterial hypertension, as well as acute or chronic kidney damage, become critical for clinicians in their daily practice. We discuss current available knowledge regarding prostanoid physiology in vascular, cardiac and renal systems, pointing out potential negative non-steroidal anti-inflammatory drug-related issues in clinical practice.
Individuals suffering from depressive disorders display a greater incidence of hypertension compared with the general population, despite reports of the association between depression and hypotension. This phenomenon may depend, at least in part, on the use of antidepressant drugs, which may influence blood pressure through different effects on adrenergic and serotoninergic pathways, as well as on histaminergic, dopaminergic, and cholinergic systems. This review summarizes extant literature on the effect of antidepressant drugs on blood pressure. Selective serotonin reuptake inhibitors are characterized by limited effects on autonomic system activity and a lower impact on blood pressure. Thus, they represent the safest class—particularly among elderly and cardiovascular patients. Serotonin–norepinephrine reuptake inhibitors, particularly venlafaxine, carry a greater risk of hypertension, possibly related to greater effects on the sympathetic nervous system. The norepinephrine reuptake inhibitor reboxetine is considered a safe option because of its neutral effects on blood pressure in long-term studies, even if both hypotensive and hypertensive effects are reported. The dopamine–norepinephrine reuptake inhibitor bupropion can lead to blood pressure increases, usually at high doses, but may also cause orthostatic hypotension, especially in patients with cardiovascular diseases. The norepinephrine–serotonin modulators, mirtazapine and mianserin, have minimal effects on blood pressure but may rarely lead to orthostatic hypotension and falls. These adverse effects are also observed with the serotonin-reuptake modulators, nefazodone and trazodone, but seldomly with vortioxetine and vilazodone. Agomelatine, the only melatonergic antidepressant drug, may also have limited effects on blood pressure. Tricyclic antidepressants have been associated with increases in blood pressure, as well as orthostatic hypotension, particularly imipramine. Oral monoamine–oxidase inhibitors, less frequently skin patch formulations, have been associated with orthostatic hypotension or, conversely, with hypertensive crisis due to ingestion of tyramine-containing food (i.e., cheese reaction). Lastly, a hypertensive crisis may complicate antidepressant treatment as a part of the serotonin syndrome, also including neuromuscular, cognitive, and autonomic dysfunctions. Clinicians treating depressive patients should carefully consider their blood pressure status and cardiovascular comorbidities because of the effects of antidepressant drugs on blood pressure profiles and potential interactions with antihypertensive treatments.
Mobility-disability is a common condition in older individuals. Many factors, including the age-related hormonal dysregulation, may concur to the development of disability in the elderly. In fact, during the aging process it is observed an imbalance between anabolic hormones that decrease (testosterone, dehydroepiandrosterone sulphate (DHEAS), estradiol, insulin like growth factor-1 (IGF-1) and Vitamin D) and catabolic hormones (cortisol, thyroid hormones) that increase. We start this review focusing on the mechanisms by which anabolic and catabolic hormones may affect physical performance and mobility. To address the role of the hormonal dysregulation to mobility-disability, we start to discuss the contribution of the single hormonal derangement. The studies used in this review were selected according to the period of time of publication, ranging from 2002 to 2013, and the age of the participants (≥65 years). We devoted particular attention to the effects of anabolic hormones (DHEAS, testosterone, estradiol, Vitamin D and IGF-1) on both skeletal muscle mass and strength, as well as other objective indicators of physical performance. We also analyzed the reasons beyond the inconclusive data coming from RCTs using sex hormones, thyroid hormones, and vitamin D (dosage, duration of treatment, baseline hormonal values and reached hormonal levels). We finally hypothesized that the parallel decline of anabolic hormones has a higher impact than a single hormonal derangement on adverse mobility outcomes in older population. Given the multifactorial origin of low mobility, we underlined the need of future synergistic optional treatments (micronutrients and exercise) to improve the effectiveness of hormonal treatment and to safely ameliorate the anabolic hormonal status and mobility in older individuals.
Human cytomegalovirus (HCMV) imprints the immune system after primary infection, however its effect during chronic infection still needs to be deciphered. In this study we report the variation of blood cell count along with anti-HCMV IgG and T cell responses to pp-65 and IE-1 antigens, that occurred after an interval of five years in a cohort of 25 seropositive healthy adults. We found increased anti-viral IgG antibody responses and intracellular interferon-gamma secreting CD8+ T cell responses to pp-65: a result consistent with memory inflation. With the only exception of shortage in naive CD8+ T cells most memory T cell subsets as well as total CD8+ T cells, T cells, lymphocytes, monocytes and leukocytes had increased. By contrast, none of the cell types tested were found to have increased in 14 subjects stably seronegative. Rather, in addition to a shortage in naive CD8+ T cells, also memory T cell subsets and most other cell types decreased, either in a statistically significant or non-significant manner. The trend of T cell pool representation with regard to CD4/CD8 ratio was in the opposing directions depending on HCMV serology. Globally, this study demonstrates different dynamic changes of most blood cell types depending on presence or absence of HCMV infection. Therefore, HCMV plays a continual role in modulating homeostasis of blood T cells and a broader expanding effect on other cell populations of lymphoid and myeloid origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.