Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment. Extracellular matrix (ECM).The structural network of secreted proteins and glycosaminoglycans that provides structure to tissue. Angiogenesis The formation of new blood vessels. Mesenchyme A type of tissue composed of loosely associated cells surrounded by extracellular matrix. Mesoderm one of three fundamental layers of tissue formed early in development and the predominant source of fibroblastic lineages.
Temporally and spatially controlled activation of the Aurora-A kinase (AURKA) is regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification, and mRNA and protein overexpression of Aurora-A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora-A to be considered a high value target for development of cancer therapeutics, with multiple agents currently in early phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora-A during interphase neurite elongation and ciliary resorption have significantly expanded understanding of its function, and may offer insights into clinical performance of Aurora-A inhibitors. We here review mitotic and non-mitotic functions of Aurora-A, discuss Aurora-A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora-A in cancer.
Intrinsic and acquired cellular resistance factors limit the efficacy of most targeted cancer therapeutics. Synthetic lethal screens in lower eukaryotes suggest that networks of genes closely linked to therapeutic targets would be enriched for determinants of drug resistance. We developed a protein network centered on the epidermal growth factor receptor (EGFR), which is a validated cancer therapeutic target, and used siRNA screening to comparatively probe this network for proteins that regulate the effectiveness of both EGFR-targeted agents and nonspecific cytotoxic agents. We identified subnetworks of proteins influencing resistance, with putative resistance determinants enriched among proteins that interacted with proteins at the core of the network. We found that EGFR antagonists and clinically relevant drugs targeting proteins connected in the EGFR network, such as the kinases protein kinase C or Aurora kinase A, or the transcriptional regulator STAT3, synergized to reduce cell viability and tumor size, suggesting the potential for a direct path to clinical exploitation. Such a focused approach can potentially improve the coherent design of combination cancer therapies.
Oncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by Kras G12D expression and homozygous Trp53 loss. Consistently, PDACs in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.