Corundum (α-alumina) is a suiTab. material for usage in various industry fields owing to its chemical stability, electrical and mechanical features. It is known that properties of ceramics could be modified by addition of different oxides, as well as by changing the consolidation parameters. In this respect, alumina was doped with 1 wt.% of Cr 2 O 3 , Mn 2 O 3 and NiO, followed by 1 hour of mechanical activation in a high-energy planetary ball mill. A sensitive dilatometer was used for sintering of powder mixtures up to 1400 o C and recording the obtained dilatation. The final density varied between cca. 1.9 and 3.3 g/cm 3. Microstructural changes were detected by SEM measurements. Changes in electrical permittivity and loss tangent were associated with the preparation conditions (types of additives, duration of mechanical activation). For a given mixture, the sintering increases the relative permittivity and decreases losses, exhibiting the optimal values of 8.32 and 0.027, respectively, for the sample activated 60 minutes and sintered, with the addition of MnO 2. Mechanical measurements indicate significant differences in strength with the addition of different transition metal oxides. Samples with Mn and Ni, activated and sintered, with strength of 121 and 86 MPa, respectively, have a significantly higher tensile strength than the other tested samples, due to their more compact microstructures.
The influence of particle geometry and volume fraction on the mechanical properties of a hydroxyapatite (HAp) particulate reinforced polymer (poly-L-lactide and collagen) matrix composite was investigated through finite-element (FE) analysis. For cube-shaped (near sharp and curved corners and edges) embedded particles, it was found that the maximum stress concentration factor (SCF) in the matrix decreases with an increase of the HAp particle volume fraction (PVF). The maximum stress concentration in the matrix material containing a spherical inclusion has low sensitivity to the PVF. The compressive Young's modulus was found to be slightly dependent on particle shape, but very sensitive to PVF. Calculated stiffness values from FE analysis were compared to the experimental results available in the literature and with predictions from the Halpin-Tsai model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.