Astroglia are key cellular sites where opiate drug signals converge with the proinflammatory effects of HIV-1 Tat signals to exacerbate HIV encephalitis. Despite this understanding, the molecular sites of convergence driving opiate-accelerated neuropathogenesis have not been deciphered. We therefore explored potential points of interaction between the signaling pathways initiated by HIV-1 Tat and opioids in striatal astrocytes. Profiling studies screening 152 transcription factors indicated that the nuclear factor-kappa B (NF-κB) subunit, c-Rel, was a likely candidate for Tat or Tat plus opiate-induced increases in cytokine and chemokine production by astrocytes. Pretreatment with the NF-κB inhibitor parthenolide provided evidence that Tat±morphine-induced release of MCP-1, IL-6 and TNF-α by astrocytes is NF-κB dependent. The nuclear export inhibitor, leptomycin B, blocked the nucleocytoplasmic shuttling of NF-κB; causing p65 (RelA) accumulation in the nucleus, and significantly attenuated cytokine production in Tat±morphine exposed astrocytes. Similarly, chelating intracellular calcium ([Ca2+]i) blocked Tat±morphine-evoked MCP-1 and IL-6 release, while artificially increasing the concentration of extracellular Ca2+ reversed this effect. Taken together, these results demonstrate that: 1) exposure to Tat±morphine is sufficient to activate NF-κB and cytokine production, 2) the release of MCP-1 and IL-6 by Tat±morphine are highly Ca2+-dependent, while TNF-α appears to be less affected by the changes in [Ca2+]i, and 3) in the presence of Tat, exposure to opiates augments Tat-induced NF-κB activation and cytokine release through a Ca2+-dependent pathway.
Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.
We searched for chromosome 3p homo-and hemizygous losses in 23 lung cancer cell lines, 53 renal cell and 22 breast carcinoma biopsies using 31 microsatellite markers located in frequently deleted 3p regions. In addition, two sequence-tagged site markers (NLJ-003 and NL3-001) located in the Alu-PCR clone 20 region (AP20) and lung cancer (LUCA) regions, respectively, were used for quantitative real-time PCR (QPCR). We found frequent (10-18%) homozygous deletions (HDs) in both 3p21.3 regions in the biopsies and lung cancer cell lines. In addition, we discovered that amplification of 3p is a very common (15-42.5%) event in these cancers and probably in other epithelial malignancies. QPCR showed that aberrations of either NLJ-003 or NL3-001 were detected in more than 90% of all studied cases. HDs were frequently detected simultaneously both in NLJ-003 or NL3-001 loci in the same tumour (Po3-10 À7 ). This observation suggests that tumour suppressor genes (TSG) in these regions could have a synergistic effect. The exceptionally high frequency of chromosome aberrations in NLJ-003 and NL3-001 loci suggests that multiple TSG(s) involved in different malignancies are located very near to these markers. Precise mapping of 15 independent HDs in the LUCA region allowed us to establish the smallest HD region in 3p21.3C located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene). This region contains 17 genes. Mapping of 19 HDs in the AP20 region resulted in the localization of the minimal region to the interval flanked by D3S1298 and D3S3623 markers. Only four genes were discovered in this interval, namely, APRG1, ITGA9, HYA22 and VILL.
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3′-untranslated region (3′-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3′-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.
We report chromosome 3p deletion mapping of 32 cervical carcinoma (CC) biopsies using 26 microsatellite markers located in frequently deleted 3p regions to detect loss of heterozygosity and homozygous loss. In addition, two STS markers (NLJ-003 and NL3-001) located in the 3p21.3 telomeric (3p21.3T) and 3p21.3 centromeric (3p21.3C) regions, respectively, were used for quantitative real-time PCR as TaqMan probes. We show that quantitative real-time PCR is reliable and sensitive and allows discriminating between 0, 1 and 2 marker copies per human genome. For the first time, frequent (five of 32 cases, i.e. 15.6%) homozygous deletions were demonstrated in CCs in both 3p21.3T and 3p21.3C regions. The smallest region homozygously deleted in 3p21.3C was located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene) and contains 17 genes previously defined as lung cancer candidate Tumor suppressor genes (TSG(s)). The smallest region homozygously deleted in 3p21.3T was flanked by D3S1298 and NL1-024 (D3S4285), excluding DLEC1 and MYD88 as candidate TSGs involved in cervical carcinogenesis. Overall, this region contains five potential candidates, namely GOLGA4, APRG1, ITGA9, HYA22 and VILL, which need to be analysed. The data showed that aberrations of either NLJ-003 or NL3-001 were detected in 29 cases (90.6%) and most likely have a synergistic effect (Po0.01). The study also demonstrated that aberrations in 3p21.3 were complex and in addition to deletions, may involve gene amplification as well. The results strongly suggest that 3p21.3T and 3p21.3C regions harbor genes involved in the origin and/or development of CCs and imply that those genes might be multiple TSG(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.