The dihydroxylated form of vitamin D3 (1,25-dihydroxy-D3)mediates a biological response by binding to intracellular receptors which belong to the steroid receptor superfamily. These receptors act as ligand-dependent transcription factors that bind to specific DNA sequences (reviewed in refs 6-9). We have identified two classes of vitamin D response elements that are activated either by the vitamin D receptor (VDR) alone or by heterodimers of VDR and the retinoid-X receptor-alpha (RXR-alpha). The motif GGGTGA arranged as a direct repeat with a spacing of six nucleotides or as a palindrome without spacing, or as an inverted palindrome with a 12-nucleotide spacing, confers vitamin D inducibility mediated by VDR alone. A second class of response elements, composed of directly repeated pairs of motifs (GGTCCA, AGGTCA, or GGGTGA) spaced by three nucleotides, is synergistically activated by RXR and VDR, but only in the presence of both ligands. Thus, the RXR ligand and the nature of the response element determine whether a nuclear receptor is co-regulated by RXR.
We developed and used real-time RT-PCR assays to investigate how the expression of typical osteoblast-related genes by human bone marrow stromal cells (BMSC) is regulated by (i) the culture time in medium inducing osteogenic differentiation and (ii) the previous expansion in medium enhancing cell osteogenic commitment. BMSC from six healthy donors were expanded in medium without (CTR) or with fibroblast growth factor-2 and dexamethasone (FGF/Dex; these factors are known to increase BMSC osteogenic commitment) and further cultivated for up to 20 days with ascorbic acid, beta-glycerophosphate and dexamethasone (these factors are typically used to induce BMSC osteogenic differentiation). Despite a high variability in the gene expression levels among different individuals, we identified the following statistically significant patterns. The mRNA levels of bone morphogenetic protein-2 (BMP-2), bone sialo protein-II (BSP), osteopontin (OP) and to a lower extent cbfa-1 increased with culture time in osteogenic medium (OM), both in CTR- and FGF/Dex-expanded BMSC, unlike levels of alkaline phosphatase, collagen type I, osteocalcin, and osteonectin. After 20 days culture in OM, BMP-2, BSP, and OP were more expressed in FGF/Dex than in CTR-expanded BMSC (mRNA levels were, respectively, 9.5-, 14.9-, and 5.8-fold higher), unlike all the other investigated genes. Analysis of single-colony-derived strains of BMSC further revealed that after 20 days culture in OM, only a subset of FGF/Dex-expanded clones expressed higher mRNA levels of BMP-2, BSP, and OP than CTR-expanded clones. In conclusion, we provide evidence that mRNA levels of BMP-2, BSP, and OP, quantified using real-time RT-PCR, can be used as markers to monitor the extent of BMSC osteogenic differentiation in vitro; using those markers, we further demonstrated that only a few subpopulations of BMSC display enhanced osteogenic differentiation following FGF/Dex expansion.
Vitamin D is a micronutrient that is needed for optimal health throughout the whole life. Vitamin D3 (cholecalciferol) can be either synthesized in the human skin upon exposure to the UV light of the sun, or it is obtained from the diet. If the photoconversion in the skin due to reduced sun exposure (e.g., in wintertime) is insufficient, intake of adequate vitamin D from the diet is essential to health. Severe vitamin D deficiency can lead to a multitude of avoidable illnesses; among them are well-known bone diseases like osteoporosis, a number of autoimmune diseases, many different cancers, and some cardiovascular diseases like hypertension are being discussed. Vitamin D is found naturally in only very few foods. Foods containing vitamin D include some fatty fish, fish liver oils, and eggs from hens that have been fed vitamin D and some fortified foods in countries with respective regulations. Based on geographic location or food availability adequate vitamin D intake might not be sufficient on a global scale. The International Osteoporosis Foundation (IOF) has collected the 25-hydroxy-vitamin D plasma levels in populations of different countries using published data and developed a global vitamin D map. This map illustrates the parts of the world, where vitamin D did not reach adequate 25-hydroxyvitamin D plasma levels: 6.7% of the papers report 25-hydroxyvitamin D plasma levels below 25 nmol/L, which indicates vitamin D deficiency, 37.3% are below 50 nmol/Land only 11.9% found 25-hydroxyvitamin D plasma levels above 75 nmol/L target as suggested by vitamin D experts. The vitamin D map is adding further evidence to the vitamin D insufficiency pandemic debate, which is also an issue in the developed world. Besides malnutrition, a condition where the diet does not match to provide the adequate levels of nutrients including micronutrients for growth and maintenance, we obviously have a situation where enough nutrients were consumed, but lacked to reach sufficient vitamin D micronutrient levels. The latter situation is known as hidden hunger. The inadequate vitamin D status impacts on health care costs, which in turn could result in significant savings, if corrected. Since little is known about the effects on the molecular level that accompany the pandemic like epigenetic imprinting, the insufficiency-triggered gene regulations or the genetic background influence on the body to maintain metabolic resilience, future research will be needed. The nutrition community is highly interested in the molecular mechanism that underlies the vitamin D insufficiency caused effect. In recent years, novel large scale technologies have become available that allow the simultaneous acquisition of transcriptome, epigenome, proteome, or metabolome data in cells of organs. These important methods are now used for nutritional approaches summarized in emerging scientific fields of nutrigenomics, nutrigenetics, or nutriepigenetics. It is believed that with the help of these novel concepts further understanding can be generated to develop f...
In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling.
Nutrigenetic research examines the effects of inter-individual differences in genotype on responses to nutrients and other food components, in the context of health and of nutrient requirements. A practical application of nutrigenetics is the use of personal genetic information to guide recommendations for dietary choices that are more efficacious at the individual or genetic subgroup level relative to generic dietary advice. Nutrigenetics is unregulated, with no defined standards, beyond some commercially adopted codes of practice. Only a few official nutrition-related professional bodies have embraced the subject, and, consequently, there is a lack of educational resources or guidance for implementation of the outcomes of nutrigenetic research. To avoid misuse and to protect the public, personalised nutrigenetic advice and information should be based on clear evidence of validity grounded in a careful and defensible interpretation of outcomes from nutrigenetic research studies. Evidence requirements are clearly stated and assessed within the context of state-of-the-art ‘evidence-based nutrition’. We have developed and present here a draft framework that can be used to assess the strength of the evidence for scientific validity of nutrigenetic knowledge and whether ‘actionable’. In addition, we propose that this framework be used as the basis for developing transparent and scientifically sound advice to the public based on nutrigenetic tests. We feel that although this area is still in its infancy, minimal guidelines are required. Though these guidelines are based on semi-quantitative data, they should stimulate debate on their utility. This framework will be revised biennially, as knowledge on the subject increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.