The current problem of managing water losses in water supply systems relies on engineering predictions of expected outcomes based on pressure manipulations using hydraulic models or other computational methods. The objective of this experiment was to conduct a field test to validate the theoretical N1 exponent of the fixed and variable area discharges (FAVAD) method. By knowing the pipe material and measuring the pressure and minimum night flow (MNF), the N1 exponent can be defined and compared to recommendations in the literature. Field measurements and experiments were performed in a small settlement in Croatia consisting of 278 house connections and 7.4 km of PVC material pipe network. Pressure manipulation was performed on a pressure-reducing valve (PRV). The resulting value of N1 = 1.76 from the experiment agrees with the literature graphs, which indicate a value of N1 between 1.5 and 2.0. Considering the difference between the studied values and the theoretically calculated MNF of 4%, it can be concluded that the implementation of the presented methodology to determine the N1 exponent can be used in practice. This type of field testing is important because such tests are difficult to perform due to the extensive pressure manipulations during the tests, which can affect the consumers and cause disturbances in the water distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.