A methodology is demonstrated to exploit the polarization sensitivity of high-resolution radar measurements to interpret and quantify upper ocean dynamics. This study particularly illustrates the potential of quad-polarization synthetic aperture radar (SAR) measurements. The analysis relies on essential characteristics of the electromagnetic scattering mechanisms and hydrodynamical principles. As the relaxation scale of centimeter-scale ocean surface scatters is typically small, radar signal anomalies associated with surface manifestations of the upper ocean dynamics on spatial scales exceeding 100 m are mostly dominated by nonresonant and nonpolarized scatters. These ''scalar'' contributions can thus efficiently trace local breaking and near-breaking areas, caused by surface current variations. Using dual copolarized measurements, the polarized Bragg-type radar scattering is isolated by considering the difference (PD) between vertically and horizontally polarized radar signals. The nonpolarized (NP) contribution associated with wave breaking is then deduced, using the measured polarization ratio (PR) between polarized signals. Considering SAR scenes depicting various surface manifestations of the upper ocean dynamics (internal waves, mesoscale surface current features, and SST front), the proposed methodology and set of decompositions (PD, PR, and NP) efficiently enable the discrimination between surface manifestation of upper ocean dynamics and wind field variability. Applied to quad-polarized SAR images, such decompositions further provide unique opportunities to more directly assess the cross-polarized (CP for HV or VH) signal sensitivity to surface roughness changes. As demonstrated, such an analysis unambiguously demonstrates and quantitatively evaluates the relative impact of breakers on cross-polarized signals under low to moderate wind conditions.
The Western Arctic Ocean is a host to major ocean circulation systems, many of which generate eddies that can transport water masses and corresponding tracers over long distances from their formation sites. However, comprehensive observations of critical eddy characteristics are currently not available and are limited to spatially and temporally sparse in situ observations. Here we use high-resolution spaceborne synthetic aperture radar measurements to detect eddies from their surface imprints in ice-free sea surface roughness, and in sea ice patterns throughout marginal ice zones. We provide the first estimate of eddy characteristics extending over the seasonally ice-free and marginal ice zone regions of the Western Arctic Ocean, including their locations, diameters, and monthly distribution. Using available synthetic aperture radar data, we identified over 4,000 open ocean eddies, as well as over 3,500 eddies in marginal ice zones from June to October in 2007, 2011, and 2016. Eddies range in size between 0.5 and 100 km and are frequently found over the shelf and near continental slopes but also present in the deep Canada Basin and over the Chukchi Plateau. We find that cyclonic eddies are twice more frequent compared to anticyclonic eddies at the surface, distinct from the dominating anticyclonic eddies observed at depth by in situ moorings and ice-tethered profilers. Our study supports the notion that eddies are ubiquitous in the Western Arctic Ocean even in the presence of sea ice and emphasizes the need for improved ocean observations and modeling at eddy scales. Plain Language SummaryOcean eddies play an important role in the transport of heat, salt, and pollutants over long distances from their formation sites. However, their observations in the Arctic Ocean are complex due to severe weather and sea ice cover. Here we present results of high-resolution satellite observations over the ice-free ocean and in the marginal ice zones. Detailed eddy characteristics are for the first time presented for the Western Arctic Ocean. These results provide observational evidence that eddies are ubiquitous in this Arctic region even in the presence of sea ice and emphasize the need for improved ocean observations and modeling at eddy scales. Key Points: • First account of eddies in the Western Arctic Ocean is presented based on satellite observations over open ocean and marginal ice zones • Eddies range in size between 0.5 and 100 km and are ubiquitous over deep and shelf regions of the Western Arctic Ocean • Cyclonic eddies are twice more frequent compared to anticyclones
In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence and the overall contribution of tidally driven mixing to Arctic Ocean state are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10–50 m and intense dissipation associated with cross‐isobath diurnal tidal currents of ∼0.15 m s−1. Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow and was released around slack water. During a 6‐hr turbulent event, high‐frequency internal waves were present, the full 300‐m depth water column became turbulent, dissipation rates increased by a factor of 100, and turbulent heat flux averaged 15 W m−2 compared with the background rate of 1 W m−2.
In this study, we investigate eddy dynamics in the northern Greenland Sea and the Fram Strait using AVISO altimetry, spaceborne synthetic aperture radar (SAR), and Finite Element Sea ice‐Ocean Model (FESOM) high‐resolution numerical model data. In the region, eddies are thought to play an important role in the redistribution of the warmer and saltier Atlantic Water between the Arctic Ocean and the areas of deep convection in the central Greenland Sea. We found that eddies detected in AVISO and in SAR form two complementary data sets of large mesoscale eddies (with typical radii of 30–50 km) and of small mesoscale/submesoscale eddies (with typical radii of 1–5 km and not exceeding 30 km), respectively. For large mesoscale eddies, the number of cyclones and anticyclones is approximately the same, while for submesoscale eddies, cyclones are strongly dominating. The limitations and possible biases in each of the data sets are discussed and cross‐validated against FESOM results. It is noted that the most energetic eddies are concentrated along the major currents and in the northern part of the region. Eddy translations follow the mean currents in their overall cyclonic circulation around the northern Greenland Sea. A convergence of the eddies toward the Nordbukta area is detected. On seasonal time scale, a higher number of more intense mesoscale eddies is observed during winter, associated with a quasi‐simultaneous intensification of the mean currents. Model results also show an increase in the number of small eddies in spring‐early summer attributed to the decay of large eddies, while in late autumn, the opposite tendency suggests eddy merger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.