Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
Reaction norms fitted through random regression models (RRM) have been widely used in animal and plant breeding for analyses of genotype × environment (G × E) interaction. However, in annual crops, they remain unexplored. Thus, this study aimed to evaluate the applicability and efficiency of RRM fitted through Legendre polynomials as a tool to recommend cotton (Gossypium hirsutum L.) genotypes. To this end, a data set with 12 genotypes of cotton evaluated in 10 environments for fiber length (FL) and fiber fineness was used. The restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) procedure was used to estimate the variance components and to predict the genetic values. Results showed that there was genetic variability among cotton genotypes and that the reaction norms over the environmental gradient illustrated the G × E interaction. Very high selective accuracies (̂> 0.90) were found for both traits in all environments, which indicates high reliability in the genotype's recommendation. The areas under the reaction norms were calculated for the recommendation of genotypes for unfavorable, favorable, and overall environments. Regarding genotypes recommendation, areas under reaction norms allow recommending genotypes for unfavorable and favorable environments, as well as for overall recommendation, for both traits. This study is the first considering reaction norms fitted through RRM for the recommendation of cotton genotypes and demonstrated the potential of this technique in cotton breeding, besides its great potential to deal with G × E interactions.
Spatial trends represent an obstacle to genetic evaluation in maize breeding. Spatial analyses can correct spatial trends, which allow for an increase in selective accuracy. The objective of this study was to compare the spatial (SPA) and non-spatial (NSPA) models in diallel multi-environment trial analyses in maize breeding. The trials consisted of 78 inter-populational maize hybrids, tested in four environments (E1, E2, E3, and E4), with three replications, under a randomized complete block design. The SPA models accounted for autocorrelation among rows and columns by the inclusion of first-order autoregressive matrices (AR1 ⊗ AR1). Then, the rows and columns factors were included in the fixed and random parts of the model. Based on the Bayesian information criteria, the SPA models were used to analyze trials E3 and E4, while the NSPA model was used for analyzing trials E1 and E2. In the joint analysis, the compound symmetry structure for the genotypic effects presented the best fit. The likelihood ratio test showed that some effects changed regarding significance when the SPA and NSPA models were used. In addition, the heritability, selective accuracy, and selection gain were higher when the SPA models were used. This indicates the power of the SPA model in dealing with spatial trends. The SPA model exhibits higher reliability values and is recommended to be incorporated in the standard procedure of genetic evaluation in maize breeding. The analyses bring the parents 2, 10 and 12, as potential parents in this microregion.
Cowpea is a legume of great importance in the Brazilian nutrition, mainly in the Northeast region. Despite the low yield of Brazilian cowpea, the species presents a genetic potential to be explored. Thus, this work aimed to characterize the genetic diversity of cowpea genotypes by agronomic traits and select genotypes for possible crosses by multivariate analysis. Four value for cultivation and use tests were carried out with cowpea genotypes in 2005 and 2006, in the municipalities of Aquidauana, Chapadão do Sul, and Dourados, in the state of Mato Grosso do Sul. The experimental design was a complete randomized block with 20 genotypes and four replications. The evaluated traits were value for cultivation, plant lodging, pod length, grain weight of five pods, number of grains per pod, pod weight, severity of powdery mildew, and grain yield. To estimate the genetic diversity among the genotypes, the optimization methods of Tocher and UPGMA were used. The generalized distance of Mahalanobis was used as a dissimilarity measure. The clustering methods revealed genetic variability among the cowpea genotypes evaluated. The methods used formed a different number of groups for each environment. Genotypes TE97-309G-24, MNC99-542F-5, BRS Paraguaçu, BRS Paraguaçu, BR 17-Gurguéia, and CNC x 409-11F-P2 can be used to obtain promising combinations and high genetic variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.