Robust and accurate visual-inertial estimation is crucial to many of today's challenges in robotics. Being able to localize against a prior map and obtain accurate and driftfree pose estimates can push the applicability of such systems even further. Most of the currently available solutions, however, either focus on a single session use-case, lack localization capabilities or an end-to-end pipeline. We believe that only a complete system, combining state-of-the-art algorithms, scalable multi-session mapping tools, and a flexible user interface, can become an efficient research platform.We therefore present maplab, an open, research-oriented visual-inertial mapping framework for processing and manipulating multi-session maps, written in C++. On the one hand, maplab can be seen as a ready-to-use visual-inertial mapping and localization system. On the other hand, maplab provides the research community with a collection of multisession mapping tools that include map merging, visual-inertial batch optimization, and loop closure. Furthermore, it includes an online frontend that can create visual-inertial maps and also track a global drift-free pose within a localization map. In this paper, we present the system architecture, five use-cases, and evaluations of the system on public datasets. The source code of maplab is freely available for the benefit of the robotics research community.
In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world.Index Terms-Deep learning in robotics and automation, autonomous agents, real world reinforcement learning, data-driven simulation. I. INTRODUCTIONE ND-TO-END (i.e., perception-to-control) trained neural networks for autonomous vehicles have shown great promise for lane stable driving [1]-[3]. However, they lack methods to learn robust models at scale and require vast amounts of training data that are time consuming and expensive to collect. Learned end-to-end driving policies and modular perception components in a driving pipeline require capturing training data from all necessary edge cases, such as recovery from off-orientation positions or even near collisions. This is not only prohibitively expensive, but also potentially dangerous [4]. Training and evaluating robotic controllers in simulation [5]-[7]
Orientation estimation for 3D objects is a common problem that is usually tackled with traditional nonlinear filtering techniques such as the extended Kalman filter (EKF) or the unscented Kalman filter (UKF). Most of these techniques assume Gaussian distributions to account for system noise and uncertain measurements. This distributional assumption does not consider the periodic nature of pose and orientation uncertainty. We propose a filter that considers the periodicity of the orientation estimation problem in its distributional assumption. This is achieved by making use of the Bingham distribution, which is defined on the hypersphere and thus inherently more suitable to periodic problems. Furthermore, handling of non-trivial system functions is done using deterministic sampling in an efficient way. A deterministic sampling scheme reminiscent of the UKF is proposed for the nonlinear manifold of orientations. It is the first deterministic sampling scheme that truly reflects the nonlinear manifold of the orientation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.