The method of advanced bypass turbojet engine core research tests with simulation of target inlet thermogasdynamic parameters at the engine OEM site is considered. It is stated that research testing is traditionally associated with the use of multifunctional test facilities capable of simulat-ing operating conditions as close as possible to operational ones for a wide range of test objects of different thrust (power) and application. Such test facilities require significant investment and operating costs, which in general determines their limited number in the world. It is shown that the steady growth of the share of research tests at the initial design stages requires organization of tests with minimal financial and material costs directly at the engine OEM site, where testing the advanced bypass turbojet engine core plays a special part. Determination of the method for simulating thermogasdynamic parameters is associated with solution of rather contradictory problems, where, on the one hand, it is required to ensure reliable reproduction of the actual operating conditions of the core for all configurations of the bypass turbojet engine under development, and on the other hand, to ensure lower manpower and cost of testing. One of the effective solutions is the use of specialized test facilities, a distinctive feature of which is determination of the simplest and most economical means of obtaining the working fluid with the required thermogasdynamic parameters for a pre-determined range of test objects of different thrust (power) and application. The technical implementation of the dedicated test facility for testing the advanced bypass turbojet engine core at UEC-Aviadvigatel JSC (Perm) is considered.
Continuous improvement in the operational characteristics of gas turbine equipment and a significant reduction in the time of its creation have led to the development and application of new technologies for conducting research tests of a gas generator—the basic section of a bypass turbojet engine. Carrying out such tests requires the reproduction of the thermo gas dynamic parameters of the working fluid at the gas generator inlet to ensure maximum similarity to the processes occurring in the engine being designed. Obtaining a working fluid with the required thermo gas dynamic parameters such as temperature, pressure, and air flow rate is carried out on the basis of a test complex. The test complex, as a control object, is a non-linear, non-stationary, multi-variable system, where each controlled variable substantially depends on other control actions. The article presents the main aspects of the behavior of the object under consideration, which are the basis for the development of an automated test system and, in particular, the principles of forming control algorithms based on the theory of fuzzy logic. The graphs of the state and control of the main elements of the test complex are presented. Special attention is given to the analysis of the proposed control algorithms.
При создании современных авиационных газотурбинных двигателей отмечается значительное усложнение систем автоматического управления и контроля, а их задачи управления являются нетривиальными по множеству причин. Для решения этих задач необходима адекватная математическая модель системы автоматического управления в реальном масштабе времени. Наличие такой модели создает предпосылки для решения задач управления, а также дает возможность обеспечения информационной избыточности, которая позволяет повысить отказоустойчивость системы автоматического управления, т.е. ее способность выполнять свои функции после появления неисправностей. В статье представлены результаты анализа математической модели современной системы автоматического управления газотурбинного двигателя на одном из стационарных и одном из переходных режимов функционирования. Анализ включает рекуррентную идентификацию коэффициентов математической модели, оценивание точности идентификации и определение статистических характеристик измерительных и системных шумов. Идентификация проводилась на основе измерительной информации, полученной в результате летных испытаний авиационного газотурбинного двигателя. Применялись методы регрессионного и дисперсионного анализа. Для определения оптимальных оценок коэффициентов математической модели использовался метод наименьших квадратов в движущемся окне. Этот метод позволяет получить несмещенные оценки коэффициентов с минимальной дисперсией. Проводилась оптимизация ширины движущегося окна с целью обеспечения минимума времени запаздывания оценок сигнала выхода модели и требуемой точности идентификации на всех режимах функционирования двигателя. Точность идентификации оценивалась по коэффициенту детерминации. Результаты анализа математической модели системы автоматического управления для одного из стационарных из переходных режимов представлены в виде таблиц и графиков. Показано, что предложенный алгоритм идентификации обеспечивает выполнение требований по точности определения оценок сигналов выхода системы автоматического управления газотурбинного двигателя и времени их запаздывания. Ключевые слова: математическая модель, идентификация, метод наименьших квадратов, оценивание, дисперсионный анализ, рекуррентная идентификация.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.