The mechanism of flash-induced changes with a periodicity of four in photosystem II (PSII) fluorescence was investigated with the aim of further using fluorescence measurements as an approach to studying the structural and functional organization of the water-oxidizing complex (WOC). The decay of the flash-induced high fluorescence state of PSII was measured with pulse amplitude modulated fluorometry in thylakoids and PSII enriched membrane fragments. Calculated QA- decay was well described by three exponential decay components, reflecting QA- reoxidation with halftimes of 450 and 860 micros, 2 and 7.6 ms, and 111 and 135 ms in thylakoids and PSII membranes, respectively. The effect of modification of the PSII donor side by changing pH or by removal of the extrinsic 17 and 24 kDa proteins on period four oscillations in both maximum fluorescence yield and the relative contribution of QA- reoxidation reactions was compared to flash-induced oxygen yield. The four-step oxidation of the manganese cluster of the WOC was found to be necessary but not sufficient to produce modulation of PSII fluorescence. The capacity of the WOC to generate molecular oxygen was also required to observe a period four in the fluorescence; however, direct quenching by oxygen was not responsible for the modulation. Potential mechanisms responsible for the periodicity of four in both maximum fluorescence yield pattern and flash-dependent changes in proportion of centers with different QA- reoxidation rates are discussed with respect to intrinsic deprotonation events occurring at the WOC.
Luminol chemiluminescence (CL) (lambda(max) = 425 nm) induced by the manganese cluster of photosystem II (PSII) (t(max) = 1-5 min) along with CL induced by mono-, di-, or tetranuclear manganese coordination complexes (t(max) = 2-40 s) is observed when either 200 mM sodium phosphate or 1 M Tris-HCl + 200 microM EDTA are present in the reaction medium (pH 8.5) containing peroxidase. This light emission is not observed when Tris is used in the reaction medium without EDTA. The yield of a given CL without peroxidase is 5%-20% of that with peroxidase. The peroxidase-dependent CL is inhibited by catalase (I50 = 0.14-0.17 mu M), while the peroxidase-independent CL is not inhibited by 100 mM ethanol, 1 mM NaN3, 20 mu M Cyt c, or 0.6 mu M catalase. The CL induced by the Mn cluster of the water-oxidizing complex (WOC) in the S3 or S2 state exceeds that of lower S states by 15-20-fold. The magnitude of CL induced by Mn complexes is dependent on the ligand type of the complex. The ligand types of the Mn complexes and the WOC in different S states are ranked according to the magnitude of the induced CL: 1,10-phenanthroline > 2.2'-bipyridine > WOC (S3 or S2) > hydrotris(pirazolyl) borate > WOC (S0-2 or S0, S1) > 1,4,7-triazacyclononane. It is concluded that CL is caused by H2O2 formed as a result of the oxidation of luminol by triplet molecular oxygen. The Mn cluster of WOC and manganese coordination complexes, acting as catalysts of this reaction, show oxidase activity. Upon S2-S3 or S1-S2 transition, changes occur in the ligand environment of the Mn cluster of WOC influencing the induction of luminol CL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.