Neonicotinoid and fungicide exposure has been linked to immunosuppression and increased susceptibility to disease in honeybees (Apis mellifera). European foulbrood, caused by the bacterium Melissococcus plutonius, is a disease of honeybee larvae which causes economic hardship for commercial beekeepers, in particular those whose colonies pollinate blueberries. We report for the first time in Canada, an atypical variant of M. plutonius isolated from a blueberry-pollinating colony. With this isolate, we used an in vitro larval infection system to study the effects of pesticide exposure on the development of European foulbrood disease. Pesticide doses tested were excessive (thiamethoxam and pyrimethanil) or maximal field-relevant (propiconazole and boscalid). We found that chronic exposure to the combination of thiamethoxam and propiconazole significantly decreased the survival of larvae infected with M. plutonius, while larvae chronically exposed to thiamethoxam and/or boscalid or pyrimethanil did not experience significant increases in mortality from M. plutonius infection in vitro. Based on these results, individual, calculated field-realistic residues of thiamethoxam and/or boscalid or pyrimethanil are unlikely to increase mortality from European foulbrood disease in honeybee worker brood, while the effects of field-relevant exposure to thiamethoxam and propiconazole on larval mortality from European foulbrood warrant further study.
Varroa destructor is currently one of the main threats for western apiculture. Today, synthetic acaricides (specifically coumaphos, amitraz, and tau-fluvalinate) are the most common methods to control Varroa infestations. These compounds, however, are frequently related to a wide range of side effects in the host, as well as a long halflife inside the hive matrices (wax and honey). The western honey bee, Apis mellifera , exhibits natural defense mechanisms against the mite such as grooming behavior, which is a sequence of bodily movements where the host scrapes its legs across its body surface to remove the mite. We tested the effects of synthetic acaricides on the performance of grooming behavior by adult honey bee workers. We found that acaricide exposure prior to grooming delayed grooming and reduced the overall duration of grooming behavior. Our data add to a list of other sublethal behavioral consequences of acaricides that may subvert a comprehensive approach to Varroa control in managed colonies.
-European honey bees were introduced to Fernando de Noronha Island in 1984 already infested by Varroa destructor , and since then they have survived without any control measures. In 2012, adult and brood infestation rates were measured and compared to historical records. There was no significant difference in mite levels between the values obtained in 1996 (14 mites/100 adult bees) and 2012 (16.5 mites/100 bees). The percentage of mites that reproduced in worker brood cells also was not significantly different from the data obtained in 1996. The frequency of hygienic behavior was similar to data obtained for resistant African-derived honey bees. Average fecundity decreased slightly between 1996 and 2012, but remained high. From our data, we conclude that those bees have maintained stable infestation levels for at least 16 years. Infestation rates remain high, at rates that would be fatal to honey bees in most regions of the world, but there is no Varroa -related colony mortality on the island.Varroa destructor / Apis mellifera / hygienic behavior / natural selection
Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, we compared spore concentrations in different sample types within individual hives, assessed the surrogacy potential of honey collected from honey supers in place of brood chamber honey or adult bees within hives, and evaluated the ability of pooled, extracted honey to predict the degree of spore contamination identified through individual hive testing. Samples of honey and bees from hives within apiaries with a recent, confirmed case of AFB in a single hive (index apiaries) and apiaries without clinical evidence of AFB (unaffected apiaries), as well as pooled, apiary-level honey samples from end-of-season extraction, were collected and cultured to detect and enumerate spores. Only a few hives were heavily contaminated by spores in any given apiary. All operations were different from one another with regard to both the overall degree of spore contamination across apiaries and the distribution of spores between index apiaries and unaffected apiaries. Within operations, individual hive spore concentrations in unaffected apiaries were significantly different from index apiaries in the brood chamber (BC) honey, honey super (HS) honey, and BC bees of one of three operations. Across all operations, BC honey was best for discriminating index apiaries from unaffected apiaries (p = 0.001), followed by HS honey (p = 0.06), and BC bees (p = 0.398). HS honey positively correlated with both BC honey (rs = 0.76, p < 0.0001) and bees (rs = 0.50, p < 0.0001) and may be useful as a surrogate for either. Spore concentrations in pooled, extracted honey seem to have predictive potential for overall spore contamination within each operation and may have prognostic value in assessing the risk of future AFB outbreaks at the apiary (or operation) level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.