Recent technological advancements have enabled the development and deployment of low-cost consumer grade monitors for ubiquitous and time-resolved indoor air quality monitoring. With their reliable performance, this technology could be instrumental in enhancing automatic controls and human decision making. We conducted a comprehensive performance evaluation of eight consumer grade multiparameter monitors and eight single-parameter sensors in detecting particulate matter, carbon dioxide, 18 total volatile organic compounds, dry-bulb air temperature, and relative humidity. In the controlled 19 chamber, we generated eight air pollution sources, each at two thermodynamic conditionscool and dry (20±1°C, 30±5%), and warm and humid (26±1°C, 70±5%). The majority of tested devices underreported reference particle measurements by up to 50%, provided acceptable responses for carbon dioxide within 15% and diverging results with poor quantitative agreement for total volatile organic compounds. Despite the reported disparities in quantitative agreements, most of the low-cost devices could detect source events and were strongly correlated with the reference data, suggesting that these units could be suitable for measurement-based indoor air quality management. Most of the tested devices have also proven to competently measure air temperature (within +/-0.6°C) and relative humidity (within +/-5% RH) and maintained a stable measurement accuracy over the two thermodynamic conditions.
A building energy performance gap can be illustrated as the difference between the theoretical (methodologically defined) and the actual energy consumption. In EU countries, Energy Performance Certificates are issued when buildings are constructed, sold, or leased. This information is the first step in order to evaluate the energy performance of the building stock. In Serbia, when issuing an energy certificate, the adopted national methodology recognizes only energy consumption for heating. The main purpose of this paper is to evaluate the energy gap and estimate the relevance of an Energy Performance Certificate to meet the national energy efficiency or carbon target. An Energy Performance Certificate determines the theoretical residential and commercial building energy efficiency or its “design intent”. This research stresses the necessity of measuring and achieving reductions in actual energy consumption through system regulation and consumers’ self-awareness in buildings. The research compares the performance of the building stock (135) that is connected to the District Heating System (DHS), with its own integrated heat meter, to Individual Gas Boiler (IGB) systems (18), in the city of Novi Sad, Serbia, built after 2014. For the purpose of comparing energy consumption, 16 buildings were selected that are very similar in terms of design, operation, and location. The data used are derived from metered consumption data, official evidence of city service companies, and Energy Performance Certificates of the considered buildings. We have determined that IGB systems have a much wider specific annual performance gap (11.19–101 kWh/m2a) than the buildings in the DHS (3.16–18.58 kWh/m2a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.