Abstract. The bases of silicate materials' manufacture of non-autoclave hardening are developed. The realisation opportunity of technological decision complex of using of mineral substances' structure in silicate materials' manufacture of non-autoclave hardening and wall's products on their basis is theoretically proved and practically confirmed. The complex activation of mixture with water materials, as slip, defined the transition from autoclave treatment to thermo-moisture one of silicate materials. The possibility of the practical realization of structure mineral substances' reserve for the energy consumption of silicate material production are proved experimentally. The optimization of the composition and the hardening conditions in the conditions of thermo-moisture treatment on the basis of experimentally-statistical modelling ensured the receipt of materials with the required properties. The analysis connection between hardening conditions and contents has been fulfilled on experimentalstatistic models. The changing of silicate materials' properties under the influence of inorganic modifier' surface, of hardening conditions and content of gypsum addition have been estimated. Correlation analysis allows to receive new information about the influence of the contents and the hardening conditions on a degree of interrelation between the structure and the properties of building materials. Optimal compositions and the regimes of hardening are recommended for the receipt of wall's articles of a different purpose.
The modern nanotechnology techniques allow receiving advanced composites of silicate matrix of thermal-moisture hardening the low-power technology today. A distinctive feature of geopolymer aerated composites is that their properties according to the basic physical and mechanical parameters exceed of the properties of the silicate matrix. Due to the implementation of a complex activation of highly mobile silicate concrete mixture, that is one of the technological features to obtain this type of composites, energy-saving modes of preparation were provided. The composites and products based on them are characterized by low density at high values of strength, water and crack resistance and heat capacity. The technological features of obtaining effective aerated composites on silica matrix of thermal-moisture hardening set out. The comparative analysis of the influence of the tripoli specific surface to the structuring of silicate matrix properties and porous composites modified of alkali containing additives were carried out. Based on this analysis the mechanism of formation of silicate matrix structure and properties was grounded and proposed. It is shown that the tripoli particles promoted “physical” seal structure of silicate matrix and the formation of capillaries’ discontinuous structure, by means of their own micro-porosity.
The effect of the quantitative and qualitative composition of mixed binders on the physical and mechanical properties of cement compositions has been experimentally established. A cement stone with a different amount and dispersion of mineral fillers was considered. The research results showed that the plastic strength of the hardening system depends on its initial composition. The defects embedded in the material during its technological processing into the product determine the local stress-strain state of the structure, the nature of cracking and the fracture surface. The effect of technological damage on the mechanical characteristics and the nature of cracking of cement compositions are shown. The possibility of reducing the material consumption of construction materials by 15-21 wt.% due to the use of fillers that are optimal in appearance and quality composition has been proved.
Using nanotechnological techniques of complex activation, the compositions and manufacturing technology of building composites on a silicate matrix of thermo-moisture hardening of reduced energy intensity have been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.