Abstract. The method and results of lidar studies of spatiotemporal variability of wind turbulence in the atmospheric boundary layer are reported. The measurements were conducted by a Stream Line pulsed coherent Doppler lidar (PCDL) with the use of conical scanning by a probing beam around the vertical axis. Lidar data are used to estimate the kinetic energy of turbulence, turbulent energy dissipation rate, integral scale of turbulence, and momentum fluxes. The dissipation rate was determined from the azimuth structure function of radial velocity within the inertial subrange of turbulence. When estimating the kinetic energy of turbulence from lidar data, we took into account the averaging of radial velocity over the sensing volume. The integral scale of turbulence was determined on the assumption that the structure of random irregularities of the wind field is described by the von Kármán model. The domain of applicability of the used method and the accuracy of the estimation of turbulence parameters were determined. Turbulence parameters estimated from Stream Line lidar measurement data and from data of a sonic anemometer were compared.
Two methods for the estimation of the turbulence energy dissipation rate (TEDR) from data measured by a 2-μm coherent Doppler lidar are described in this paper. Based on data measured at the Tarbes-Lourdes-Pyrénées International Airport in summer 2003, height profiles of TEDR have been retrieved. The results of TEDR estimation both from the Doppler spectrum width and from the velocity structure function are compared. Moreover, the experiment has been treated by numerical simulation and the theoretical results have been used for verification of the described methods.
An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It was found that a working wind turbine generates a wake with the maximum velocity deficit varying from 27% to 74% and with the longitudinal dimension varying from 120 up to 1180 m, depending on the wind strength and atmospheric turbulence. It is shown that, at high wind speeds, the twofold increase of the turbulent energy dissipation rate (from 0.0066 to 0.013 m2 s−3) leads, on average, to halving of the longitudinal dimension of the wind turbine wake (from 680 to 340 m).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.