Brief -10-second long -irradiation of a photosystem II-deficient mutant of cyanobacterium Synechocystis sp. PCC 6803 with intense blue or UV-B light causes an about 40% decrease of phycobilisome (PBS) fluorescence, slowly reversible in the dark. The registered action spectrum of PBS fluorescence quenching only shows bands at 500, 470 and 430 nm, typical of carotenoids, and an additional UV-B band; no peaks in the region of chlorophyll or PBS absorption have been found. We propose that quenching induced by carotenoids, possibly proteinbound or glycoside, reveals a new regulatory mechanism protecting photosynthetic apparatus of cyanobacteria against photodamage.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.
In cyanobacteria, phycobilisomes (PBS) act as antenna of the photosynthetic pigment apparatus. They contain brightly colored phycobiliproteins (PBP) and form giant supramolecular complexes (up to 3000-7000 kDa) containing 200 to 500 phycobilin chromophores covalently bound to the proteins. There are over ten various PBP known, which falls into one of three groups: phycoerythrins, phycocyanins, and allo phycocyanins. Hollow disks of PBP trimers and hexamers are arranged into cylinders by colorless linker pro teins; the cylinders are then assembled into PBS. Typical semidiscoidal PBS consists of a central core formed by three allophycocyanin cylinders and of six lateral cylinders consisting of other PBP and attached as a fan to the nucleus. The PBS number, size, and pigment composition in cyanobacteria depend on light conditions and other ambient factors. While PBSs have certain advantages compared to other antennae, these pigmentprotein complexes require more energy for their biosynthesis than the chlorophyll a/b and chlorophyll a/c proteins of oxygenic photosynthetic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.