Surface chemistry and dynamics are optically imaged label-free and non-invasively in a 3D confined geometry and on sub-second time scales
AbstractThe interfacial structure and dynamics of water in a microscopically confined geometry is imaged in three dimensions and on millisecond time scales. We developed a 3D wide-field second harmonic microscope that employs structured illumination. We image pH induced chemical changes on the curved and confined inner and outer surfaces of a cylindrical glass micro-capillary immersed in aqueous solution. The image contrast reports on the orientational order of interfacial water, induced by chargedipole interactions between water molecules and surface charges. The images constitute surface potential maps. Spatially resolved surface pK a,s values are determined for the silica deprotonation reaction.Values range from 2.3
Understanding the mechanism of the oxygen evolution reaction (OER), the oxidative half of electrolytic water splitting, has proven challenging. Perhaps the largest hurdle has been gaining experimental insight into the active site of the electrocatalyst used to facilitate this chemistry. Decades of study have clarified that a range of transition-metal oxides have particularly high catalytic activity for the OER. Unfortunately, for virtually all of these materials, metal oxidation and the OER occur at similar potentials. As a result, catalyst surface topography and electronic structure are expected to continuously evolve under reactive conditions. Gaining experimental insight into the OER mechanism on such materials thus requires a tool that allows spatially resolved characterization of the OER activity. In this study, we overcome this formidable experimental challenge using second harmonic microscopy and electrochemical methods to characterize the spatial heterogeneity of OER activity on polycrystalline Au working electrodes. At moderately anodic potentials, we find that the OER activity of the electrode is dominated by <1% of the surface area and that there are two types of active sites. The first is observed at potentials positive of the OER onset and is stable under potential cycling (and thus presumably extends multiple layers into the bulk gold electrode). The second occurs at potentials negative of the OER onset and is removed by potential cycling (suggesting that it involves a structural motif only 1−2 Au layers deep). This type of active site is most easily understood as the catalytically active species (hydrous oxide) in the so-called incipient hydrous oxide/adatom mediator model of electrocatalysis. Combining the ability we demonstrate here to characterize the spatial heterogeneity of OER activity with a systematic program of electrode surface structural modification offers the possibility of creating a generation of OER electrocatalysts with unusually high activity.
Designing efficient catalysts requires correlating surface structure and local chemical composition with reactivity on length scales from nanometers to tens of microns. While much work has been done on this structure/function correlation on single crystals, comparatively little has been done for catalysts of relevance in applications. Such materials are typically highly heterogeneous and thus require methods that allow mapping of the structure/function relationship during electrochemical conversion. Here, we use optical second harmonic imaging combined with cyclic voltammetry to map the surface of gold nanocrystalline and polycrystalline electrodes during electrooxidation and to quantify the spatial extent of surface reconstruction during potential cycling. The wide-field configuration of our microscope allows for real-time imaging of an area ∼100 μm in diameter with submicron resolution. By analyzing the voltage dependence of each pixel, we uncover the heterogeneity of the second harmonic signal and quantify the fraction of domains where it follows a positive quadratic dependence with increasing bias. There, the second harmonic intensity is mainly ascribed to electronic polarization contributions at the metal/electrolyte interface. Additionally, we locate areas where the second harmonic signal follows a negative quadratic dependence with increasing bias, which also show the largest changes during successive cyclic voltammetry sweeps as determined by an additional correlation coefficient analysis. We assign these areas to domains of higher roughness that are prone to potential-induced surface restructuring and where anion adsorption occurs at lower potentials than expected based on the cyclic voltammetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.