Studies of isotopically labeled compounds have been fundamental to understanding metabolic pathways and fluxes. They have traditionally, however, been used in conjunction with targeted analyses that identify and quantify a limited number of labeled downstream metabolites. Here we describe an alternative workflow that leverages recent advances in untargeted metabolomic technologies to track the fates of isotopically labeled metabolites in a global, unbiased manner. This untargeted approach can be applied to discover novel biochemical pathways and characterize changes in the fates of labeled metabolites as a function of altered biological conditions such as disease. To facilitate the data analysis, we introduce X13CMS, an extension of the widely used mass spectrometry-based metabolomic software package XCMS. X13CMS uses the XCMS platform to detect metabolite peaks and perform retention-time alignment in liquid chromatography/mass spectrometry (LC/MS) data. With the use of the XCMS output, the program then identifies isotopologue groups that correspond to isotopically labeled compounds. The retrieval of these groups is done without any a priori knowledge besides the following input parameters: (i) the mass difference between the unlabeled and labeled isotopes, (ii) the mass accuracy of the instrument used in the analysis, and (iii) the estimated retention-time reproducibility of the chromatographic method. Despite its name, X13CMS can be used to track any isotopic label. Additionally, it detects differential labeling patterns in biological samples collected from parallel control and experimental conditions. We validated the ability of X13CMS to accurately retrieve labeled metabolites from complex biological matrices both with targeted LC/MS/MS analysis of a subset of the hits identified by the program and with labeled standards spiked into cell extracts. We demonstrate the full functionality of X13CMS with an analysis of cultured rat astrocytes treated with uniformly labeled (U-)13C-glucose during lipopolysaccharide (LPS) challenge. Our results show that out of 223 isotopologue groups enriched from U-13C-glucose, 95 have statistically significant differential labeling patterns in astrocytes challenged with LPS compared to unchallenged control cells. Only two of these groups overlap with the 32 differentially regulated peaks identified by XCMS, indicating that X13CMS uncovers different and complementary information from untargeted metabolomic studies. Like XCMS, X13CMS is implemented in R. It is available from our laboratory website at .
Global metabolomics describes the comprehensive analysis of small molecules in a biological system without bias. With mass spectrometry-based methods, global metabolomic datasets typically comprise thousands of peaks, each of which is associated with a mass-to-charge ratio, retention time, fold change, p-value, and relative intensity. Although several visualization schemes have been used for metabolomic data, most commonly used representations exclude important data dimensions and therefore limit interpretation of global datasets. Given that metabolite identification through tandem mass spectrometry data acquisition is a time-limiting step of the untargeted metabolomic workflow, simultaneous visualization of these parameters from large sets of data could facilitate compound identification and data interpretation. Here we present such a visualization scheme of global metabolomic data by using a so-called “cloud plot” to represent multi-dimensional data from septic mice. While much attention has been dedicated to lipid compounds as potential biomarkers for sepsis, the cloud plot shows that alterations in hydrophilic metabolites may provide an early signature of the disease prior to the onset of clinical symptoms. The cloud plot is an effective representation of global mass spectrometry-based metabolomic data and we describe how to extract it as standard output from our XCMS metabolomic software.
Mass spectrometry-based metabolomics relies on MS2 data for structural characterization of metabolites. To obtain the high-quality MS2 data necessary to support metabolite identifications, ions of interest must be purely isolated for fragmentation. Here we show that metabolomic MS2 data are frequently characterized by contaminating ions that prevent structural identification. Although using narrow-isolation windows can minimize contaminating MS2 fragments, even narrow windows are not always selective enough and they can complicate data analysis by removing isotopic patterns from MS2 spectra. Moreover, narrow windows can significantly reduce sensitivity. In this work we introduce a novel, two-part approach for performing metabolomic identifications that addresses these issues. First, we collect MS2 scans with less stringent isolation settings to obtain improved sensitivity at the expense of specificity. Then, by evaluating MS2 fragment intensities as a function of retention time and precursor mass targeted for MS2 analysis, we obtain deconvolved MS2 spectra that are consistent with pure standards and can therefore be used for metabolite identification. The value of our approach is highlighted with metabolic extracts from brain, liver, astrocytes, as well as nerve tissue and performance is evaluated by using pure metabolite standards in combination with simulations based on raw MS2 data from the METLIN metabolite database. An R package implementing the algorithms used in our workflow is available on our laboratory website (http://pattilab.wustl.edu/decoms2.php).
BackgroundThe laboratory mouse is the most commonly used model for studying variation in complex traits relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J, which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal behavior, and methamphetamine sensitivity.ResultsWe identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains relative to the reference genome and discovered novel variants in these two strains by comparing their sequences to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic (231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13 associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length.ConclusionsWe show how integrating genomic sequence with QTL reduces the QTL search space and helps researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic landscape of the laboratory mouse.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1592-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.