Online experiments are an alternative for researchers interested in conducting behavioral research outside the laboratory. However, an online assessment might become a challenge when long and complex experiments need to be conducted in a specific order or with supervision from a researcher. The aim of this study was to test the computational validity and the feasibility of a remote and synchronous reinforcement learning (RL) experiment conducted during the social-distancing measures imposed by the pandemic. An additional feature of this study was to describe how a behavioral experiment originally created to be conducted in-person was transformed into an online supervised remote experiment. Open-source software was used to collect data, conduct statistical analysis, and do computational modeling. Python codes were created to replicate computational models that simulate the effect of working memory (WM) load over RL performance. Our behavioral results indicated that we were able to replicate remotely and with a modified behavioral task the effects of working memory (WM) load over RL performance observed in previous studies with in-person assessments. Our computational analyses using Python code also captured the effects of WM load over RL as expected, which suggests that the algorithms and optimization methods were reliable in their ability to reproduce behavior. The behavioral and computational validation shown in this study and the detailed description of the supervised remote testing may be useful for researchers interested in conducting long and complex experiments online. Supplementary Information The online version contains supplementary material available at 10.3758/s13428-022-01982-6.
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais. AbstractThe experimental acquisition of neuronal signals is a major advance in neuroscience.Through observations of electric current and potential in a brain region, it is possible to understand the physiological processes involved in the action potential generation, and create mathematical models capable of simulating the behavior of the neuronal cell.A common practice in this kind of experiment is to obtain readings from an array of electrodes positioned in a medium shared by several neurons, which results in a mixture of neuronal signals in the same time series. This work proposes a discrete-time linear model of the neuronal signal during the firing of the cell. The coefficients of this model are estimated using real samples of the neuronal signals obtained in vivo. The conceived modeling process employs system identification and signal processing concepts, and is dissociated from any considerations about the biophysical function of the neuronal cell, providing a low-complexity alternative to model the neuronal spike. In addition, the use of a linear representation allows the idealization of an inverse system, whose main purpose is to recover the original signal of each active neuron in a given extracellular mixture. In this context, some solutions based on adaptive filters are discussed for the inverse model simulation, introducing a new approach to the problem of neuronal spike separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.