Commission V, WG V/7 KEY WORDS: city as an organism, energy balance, metabolism, free energy, flows of resources, urban environment, entropy. ABSTRACT:Today, humanity is experiencing an "urban age", and therefore issues of good management of energy consumption and energy spent on utilization of waste in cities are becoming particularly acute. In this regard, the working group of the World Energy Council proposed a concept of the "energy balance" of the urban environment. This concept was that the energy produced should cover the energy consumed. Metabolism of the urban environment is so hot and so rarely studied by urban planners. This condition is linked first with the fact that metabolism is nothing more than a network of exchange of physical, energy resources and information. This is the real point of meeting the natural, technological, social, economic processes and their transformation into one another. Metabolism is the most important tool for knowing the real mechanics of the movement of resources in such a complex system as the urban environment. The content of the article is an analysis of significant energy and material flows characterizing the metabolism of the urban environment. We considered in the article a new energy paradigm. This paradigm will help in carrying out research in such areas as reducing the burden on the state of the environment, reducing environmental problems and reducing dependence on fossil fuels. Methods and models of metabolic processes in the urban environment will allow to implement in practice the concept of sustainable development of the urban environment, which is the development of the teaching V. Vernadsky about the noosphere.
The research aim is to obtain a cartographic model of an urbanized territory by means of thermal survey in an infrared range. With this cartographic model, it will be then possible to reduce the zones in the urbanized territories differing in the level of superficial heat. Further, we will be able to reduce the proof thermal anomalies and thermal structures of the localities that are related to the natural and anthropogenic systems. On the examples of the cities of Ukraine – Energodar and Nikopol, we defined the sources of caloradiances from major industrial concerns as well as from thermal and nuclear power plants. For comparison, we built the model of thermal structure of the city of Tokai and the nuclear power plant with the same name Tokai (Japan). The sources of caloradiances can be, for example, pipes of thermal power stations, ponds-coolers, corps of steel-making production, and other similar objects. If the sizes of such source are known, then we are able to get the absolute values of temperatures.
The urban environment is a networked metabolic organism. The urban environment includes networks that feed it with energy, resources, people, goods and information. The urban environment carries out a permanent transformation of matter, energy and produces waste, which together change the urban environment. We have proposed to use an indicator for assessing the efficiency of the metabolism of the urban environment, which allows to take into account the relationship between the urban structure, energy consumption, emissions of pollutants and the intensity of consumption of natural resources. We use this indicator as a tool for forecasting sustainable urban development. Using the example of Poltava city, we have shown that the indicator for assessing the metabolic efficiency of the urban environment can be used as one of the decision-making tools for the sustainable development of Ukrainian cities. The improvement of existing and development of new indicators is an important task towards the implementation of the concept of sustainable development, which is a logical continuation of the teachings of V. I. Vernadsky on the noosphere.
The article is a continuation of series of publications that consider tactical properties of geoinformational monitoring of urban environment, which is a necessary component of modern military-geographical description of theater of operations. The property of polyscale allows to reveal spatio-temporal features of development of urban environment at different territorial levels - global, regional, local, as well as at the macro and meso level. Theoretical-set representation of the principle of polyscale modeling of urban objects is considered, on the basis of which models and methods of geoinformational monitoring at each scale level can be presented as a composition of ordered pairs of different structural type. An example of a hierarchy of methods and models used in urban studies is given. The concepts of basic models-compositions are introduced and the technology for construction of polyscale compositions is offered, which allow to determine the computational essence of corresponding mathematical models at each level of polyscale approach in studying of urban environment. Generalized scheme of application of principle of polyscale decomposition of geoinformational monitoring object of urban environment with definition of models of object of monitoring at each level of information space is developed. Each level of observed territory in the language of category theory can be interpreted as a category, the objects of which are spatial data, which are organized in the form of thematic layers (vector and raster) and contain many spatial objects grouped by thematic proximity and in certain coordinate system generalized for thematic layers. The proposed system of urban environment monitoring allows to improve principles of manage-ment decisions in development programs of different scales.
The quality and comfort of the urban environment serve as one of the most important factors for ensuring the competitiveness of municipalities, regions and countries. The quality of the urban environment is determined by the quality of its three components: anthropogenic, natural and social environment. The main problem of assessing the state of the urban environment is the fragmentation of methodological approaches and adequate tools for assessing the qualitative state of the urban environment. This objectively makes it difficult for municipal authorities to use this assessment as an element in the system of urban planning decision making. We have developed an intelligent information system to provide an assessment of potential, real and lost opportunities of the urban environment using fuzzy expert knowledge. This system operates in the conditions of using non-numeric, inaccurate and incomplete information to ensure the management of sustainable city development. The system for assessing the potential, real and lost opportunities of the urban environment is based on the use of fuzzy logic equations. It allows to evaluate the effectiveness of metabolic transformations of each subsystem of the urban environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.