BackgroundTalimogene laherparepvec (T-VEC), an oncolytic virus, was designed to selectively replicate in and lyse tumor cells, releasing tumor-derived antigen to stimulate a tumor-specific immune response.MethodsIn this phase II study in patients with unresectable stage IIIB–IV melanoma, we evaluated non-injected lesions to establish whether baseline or change in intratumoral CD8+ T-cell density (determined using immunohistochemistry) correlated with T-VEC clinical response.ResultsOf 112 enrolled patients, 111 received ≥1 dose of T-VEC. After a median follow-up of 108.0 weeks, objective/complete response rates were 28%/14% in the overall population and 32%/18% in patients with stage IIIB–IVM1a disease. No unexpected toxicity occurred. Baseline and week 6 change from baseline CD8+ T-cell density results were available for 91 and 65 patients, respectively. Neither baseline nor change in CD8+ T-cell density correlated with objective response rate, changes in tumor burden, duration of response or durable response rate. However, a 2.4-fold median increase in CD8+ T-cell density in non-injected lesions from baseline to week 6 was observed. In exploratory analyses, multiparameter immunofluorescence showed that after treatment there was an increase in the proportion of infiltrating CD8+ T-cells expressing granzyme B and checkpoint markers (programmed death-1, programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4) in non-injected lesions, together with an increase in helper T-cells. Consistent with T-cell infiltrate, we observed an increase in the adaptive resistance marker PD-L1 in non-injected lesions.ConclusionsThis study indicates that T-VEC induces systemic immune activity and alters the tumor microenvironment in a way that will likely enhance the effects of other immunotherapy agents in combination therapy.Trial registration numberNCT02366195.
Dysregulation of the immune system undoubtedly plays an important and, perhaps, determining role in the COVID-19 pathogenesis. While the main treatment of the COVID-19 intoxication is focused on neutralizing the excessive inflammatory response, it is worth considering an equally significant problem of the immunosuppressive conditions including immuno-paralysis, which lead to the secondary infection. Therefore, choosing a treatment strategy for the immune-mediated complications of coronavirus infection, one has to pass between Scylla and Charybdis, so that, in the fight against the “cytokine storm,” it is vital not to miss the point of the immune silence that turns into immuno-paralysis.
There is considerable clinical and fundamental value in measuring the clonal heterogeneity of T and B cell expansions in tumors and tumor-associated lymphoid structures-along with the associated heterogeneity of the tumor neoantigen landscape-but such analyses remain challenging to perform. Here, we propose a straightforward approach to analyze the heterogeneity of immune repertoires between different tissue sections in a quantitative and controlled way, based on a beta-binomial noise model trained on control replicates obtained at the level of single-cell suspensions. This approach allows to identify local clonal expansions with high accuracy. We reveal in situ proliferation of clonal T cells in a mouse model of melanoma, and analyze heterogeneity of immunoglobulin repertoires between sections of a metastatically-infiltrated lymph node in human melanoma and primary human colon tumor. On the latter example, we demonstrate the importance of training the noise model on datasets with depth and content that is comparable to the samples being studied. Altogether, we describe here the crucial basic instrumentarium needed to facilitate proper experimental setup planning in the rapidly evolving field of intratumoral immune repertoires, from the wet lab to bioinformatics analysis.
Adoptive T cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T-cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lyzed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: 1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); 2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; 3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly-isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.