An error analysis is presented for explicit partitioned Runge-Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.
MSC:65L05 65L06 65L20 65M20
Keywords:Initial value problem Method of lines (MOL) Multistep methods Monotonicity Boundedness Strong-stability-preserving (SSP) a b s t r a c t One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.