Replicative senescence is an irreversible cell cycle arrest that limits the proliferation of damaged cells and may be an important tumor suppression mechanism in vivo. This process is regulated at critical steps by the tumor suppressor p53. To identify genes that may regulate the senescence process, we performed cDNA microarray analysis of gene expression in senescent, young proliferating, and hTERT-immortalized primary human fibroblasts. The histone methyltransferase (HMTase), EZH2, was specifically downregulated in senescent cells. Activated p53 suppressed EZH2 gene expression through repression of the EZH2 gene promoter. This activity of p53 requires intact p53 transactivation and DNA binding domains. Furthermore, the repression of EZH2 promoter by p53 is dependent on p53 transcriptional target p21 Waf1 inactivating RB/E2F pathways. In addition, the knockdown of EZH2 expression retards cell proliferation and induces G2/M arrest. We suggest that the p53-dependent suppression of EZH2 expression is a novel pathway that contributes to p53-mediated G2/M arrest. EZH2 associated complex possesses HMTase activity and is involved in epigenetic regulation. Activated p53 suppresses EZH2 expression, suggesting a further role for p53 in epigenetic regulation and in the maintenance of genetic stability. Suppression of EZH2 expression in tumors by p53 may lead to novel approaches to control cancer progression.
BackgroundThe tumor suppressor p53 is an important regulator that controls various cellular networks, including cell differentiation. Interestingly, some studies suggest that p53 facilitates cell differentiation, whereas others claim that it suppresses differentiation. Therefore, it is critical to evaluate whether this inconsistency represents an authentic differential p53 activity manifested in the various differentiation programs.Methodology/Principal FindingsTo clarify this important issue, we conducted a comparative study of several mesenchymal differentiation programs. The effects of p53 knockdown or enhanced activity were analyzed in mouse and human mesenchymal cells, representing various stages of several differentiation programs. We found that p53 down-regulated the expression of master differentiation-inducing transcription factors, thereby inhibiting osteogenic, adipogenic and smooth muscle differentiation of multiple mesenchymal cell types. In contrast, p53 is essential for skeletal muscle differentiation and osteogenic re-programming of skeletal muscle committed cells.ConclusionsThese comparative studies suggest that, depending on the specific cell type and the specific differentiation program, p53 may exert a positive or a negative effect, and thus can be referred as a “guardian of differentiation” at large.
Highlights d Bacteria confer host cells with resistance to NAMPT inhibitors (NAMPTis) d Bacteria produce deamidated NAD precursors and prevent NAD depletion d Bacteria rescue NAMPTi-induced toxicity through nicotinamidase PncA d Oral NAM and NR boost in vivo NAD largely via microbiotadependent deamidated pathway
The difficulty to dissect a complex phenotype of established malignant cells to several critical transcriptional programs greatly impends our understanding of the malignant transformation. The genetic elements required to transform some primary human cells to a tumorigenic state were described in several recent studies. We took the advantage of the global genomic profiling approach and tried to go one step further in the dissection of the transformation network. We sought to identify the genetic signatures and key target genes, which underlie the genetic alterations in p53, Ras, INK4A locus, and telomerase, introduced in a stepwise manner into primary human fibroblasts. Here, we show that these are the minimally required genetic alterations for sarcomagenesis in vivo. A genome-wide expression profiling identified distinct genetic signatures corresponding to the genetic alterations listed above. Most importantly, unique transformation hallmarks, such as differentiation block, aberrant mitotic progression, increased angiogenesis, and invasiveness, were identified and coupled with genetic signatures assigned for the genetic alterations in the p53, INK4A locus, and H-Ras, respectively. Furthermore, a transcriptional program that defines the cellular response to p53 inactivation was an excellent predictor of metastasis development and bad prognosis in breast cancer patients. Deciphering these transformation fingerprints, which are affected by the most common oncogenic mutations, provides considerable insight into regulatory circuits controlling malignant transformation and will hopefully open new avenues for rational therapeutic decisions. (Cancer Res 2005; 65(11): 4530-43)
Inactivation of p53 and activation of telomerase occur in the majority of human cancers, raising the possibility of a link between these two pathways. Overexpression of wild-type p53 down-regulates the enzymatic activity of telomerase in various cancer cell lines through transcriptional repression of its catalytic subunit, human telomerase reverse transcriptase (hTERT). In this study, we re-evaluated the role of p53 in telomerase regulation using isogenic cell lines expressing physiological levels of p53. We demonstrate that endogenous wild-type p53 was able to down-regulate telomerase activity, hTERT mRNA levels, and promoter activity; however, the ability to repress hTERT expression was found to be cell type-specific. The integrity of the DNA-binding core domain, the N-terminal transactivation domain, and the C-terminal oligomerization domains of p53 was essential for hTERT promoter repression, whereas the proline-rich domain and the extreme C terminus were not required. Southwestern and chromatin immunoprecipitation experiments demonstrated lack of p53 binding to the hTERT promoter, raising the possibility of an indirect repressive mechanism. The down-regulation of hTERT promoter activity was abolished by a dominantnegative E2F1 mutant. Mutational analysis identified a specific E2F site responsible for p53-mediated repression. Knockdown of the key p53 transcriptional target, p21, was sufficient to eliminate the p53-dependent repression of hTERT. Inactivation of the Rb family using either viral oncoproteins or RNA interference attenuated the repression. Inhibition of histone deacetylases also interfered with the repression of hTERT by p53. Therefore, our results suggest that repression of hTERT by endogenous p53 is mediated by p21 and E2F.Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres at the end of eukaryotic chromosomes, has been implicated in aging, immortalization, and transformation. The human telomerase complex is composed of a catalytic subunit (hTERT) 1 with a reverse transcriptase activity(1) and an RNA-containing subunit (human telomerase RNA) (2) that is used as a template for extending telomere length.Telomerase activity is repressed in most normal human somatic tissues, whereas the enzyme is active in ϳ90% of human cancers (3). However, the mechanism through which telomerase is reactivated in the process of carcinogenesis remains unclear. Telomerase enzymatic activity can be regulated at multiple levels, including hTERT transcription, alternative splicing, chaperone-mediated folding, phosphorylation, and nuclear translocation; however, the major control mechanism of telomerase regulation seems to be at the level of hTERT transcription (for a review of telomerase regulation, see Ref. 4 and references therein). The tumor suppressor gene p53 is a sequence-specific transcription factor that can mediate many downstream effects such as growth arrest and apoptosis through activation or repression of its target genes (5). p53 is the most frequently altered gene in human cancer...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.