The physicochemical properties of water activated by high-purity low-temperature argon plasma of electrodeless microwave discharge at atmospheric pressure are investigated. Such parameters of activated water as electrical conductivity, redox potential, hydrogen index (pH), the concentrations of dissolved molecular oxygen, hydrogen peroxide, OH-radicals, nitrate and nitrite anions depending on the plasma jet distance above the water surface and duration of activation were studied. Under irradiation conditions close to optimum, it was shown that the generation rate in the absence of impurities are 200 μM/min for H2O2; 800 μM/min for •OH and 2 mM/min for NOx−. The use of plasma activated water (PAW) in agriculture has been tested. It was shown that strawberry seeds treated with a surfactant solution grow much faster than control seeds. The mechanisms of the chemical composition formation of activated water and its biological properties are discussed.
A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by 35–44%, and the diameter of the root collar by 10–28%. In this case, the electrical resistivity of the graft decreased by 20–48%, which indicated the formation of a more developed vascular system at the rootstock–scion interface. The characteristics of DBD CAP and PTS are described in detail.
We compared two approaches to non-invasive proximal sensing of the early changes in fresh-cut lettuce leaf quality: hyperspectral imaging and imaging of variable chlorophyll fluorescence contained in the leaves. The estimations made by the imaging techniques were confronted with the quality assessments made by traditional biochemical assays (i.e., relative water content and foliar pigment (chlorophyll and carotenoid) composition. The hyperspectral imaging-based approach provided the highest sensitivity to the decline of fresh-cut lettuce leaf quality taking place within 24 h from cutting. Using of the imaging pulse-amplitude modulated PAM chlorophyll fluorometer was complicated by (i) weak correlation of the spatial distribution pattern of the Qy parameter with the actual physiological condition of the plant object and (ii) its high degree of heterogeneity. Accordingly, the imaging PAM-based approach was sensitive only to the manifestations of leaf quality degradation at advanced stages of the process. Sealing the leaves in polyethylene bags slowed down the leaf quality degradation at the initial stages (<three days) but promoted its rate at more advanced stages, likely due to build-up of ethylene in the bags. An approach was developed to the processing of hyperspectral data for non-invasive monitoring of the lettuce leaves with a potential for implementation in greenhouses and packing lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.