A life-sized optomechanical eye model with the flexibility to be patient-specific was designed and constructed. The model had the resolution of a healthy human eye and recreated normal refractive errors. This model may be useful in the evaluation of IOLs for cataract surgery.
Monocentric lenses have recently changed from primarily a historic curiosity to a potential solution for panoramic high-resolution imagers, where the spherical image surface is directly detected by curved image sensors or optically transferred onto multiple conventional flat focal planes. We compare imaging and waveguide-based transfer of the spherical image surface formed by the monocentric lens onto planar image sensors, showing that both approaches can make the system input aperture and resolution substantially independent of the input angle. We present aberration analysis that demonstrates that wide-field monocentric lenses can be focused by purely axial translation and describe a systematic design process to identify the best designs for two-glass symmetric monocentric lenses. Finally, we use this approach to design an F/1.7, 12 mm focal length imager with an up to 160° field of view and show that it compares favorably in size and performance to conventional wide-angle imagers.
Monocentric lenses provide high-resolution wide field of view imaging onto a hemispherical image surface, which can be coupled to conventional focal planes using fiber-bundle image transfer. We show the design and characterization of a 2-glass concentric F/1.0 lens, and describe integration of 5 Mpixel 1.75µm pitch back-side illuminated color CMOS sensors with 2.5µm pitch fiber bundles, then show the fiber-coupled lens compares favorably in both resolution and light collection to a 10x larger conventional F/4 wide angle photographic lens. We describe assembly of the monocentric lens and 6 adjacent sensors with focus optomechanics into an extremely compact 30Mpixel panoramic imager with a 126° "letterbox" format field of view.
We present design and first demonstration of optics for a telescopic contact lens with independent optical paths for switching between normal and magnified vision. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8 x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision. We present an experimental demonstration of the contact lens mounted on a life-sized optomechanical model eye and, using a pair of modified commercial 3D television glasses, demonstrate electrically operated polarization switching between normal and magnified vision.
Monocentric lenses have proven exceptionally capable of high numerical aperture wide-field imaging-provided the overall system can accommodate a spherically curved image surface. We will present a summary of recent work on the design optimization and experimental demonstrations of monocentric wide-field imaging, including systems based on waveguide coupling of the image to conventional focal plane sensor(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.