Dipeptidyl peptidase I (DPPI) or cathepsin C is the physiological activator of groups of serine proteases from immune and in¯ammatory cells vital for defense of an organism. The structure presented shows how an additional domain transforms the framework of a papain-like endopeptidase into a robust oligomeric protease-processing enzyme. The tetrahedral arrangement of the active sites exposed to solvent allows approach of proteins in their native state; the massive body of the exclusion domain fastened within the tetrahedral framework excludes approach of a polypeptide chain apart from its termini; and the carboxylic group of Asp1 positions the N-terminal amino group of the substrate. Based on a structural comparison and interactions within the active site cleft, it is suggested that the exclusion domain originates from a metallo-protease inhibitor. The location of missense mutations, characterized in people suffering from Haim±Munk and Papillon±Lefevre syndromes, suggests how they disrupt the fold and function of the enzyme.
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon-Lefèvre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early-onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p.V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 micro moles/mg/min vs. 1,678.7 +/- SD 527.2 micro moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS.
The crystal structure of the inhibitor NS-134 in complex with bovine cathepsin B reveals that functional groups attached to both sides of the epoxysuccinyl reactive group bind to the part of active-site cleft as predicted. The -Leu-Pro-OH side binds to the primed binding sites interacting with the His110 and His111 residues with its C-terminal carboxy group, whereas the -Leu-Gly-Meu (-Leu-Gly-Gly-OMe) part (Meu, methoxycarbonylmethyl) binds along the non-primed binding sites. Comparison with the propeptide structures of cathepsins revealed that the binding of the latter part is least similar to the procathepsin B structure; this result, together with the two-residue shift in positioning of the Leu-Gly-Gly part, suggests that the propeptide structures of the cognate enzymes may not be the best starting point for the design of reverse binding inhibitors.
Formation of PrP aggregates is considered to be a characteristic event in the pathogenesis of TSE diseases, accompanied by brain inXammation and neurodegeneration. Factors identiWed as contributing to aggregate formation are of interest as potential therapeutic targets. We report that in vitro proteolysis of ovine PrP . This implies an important structural contribution of the 1 sequence within the globular domain of PrP. We propose that the removal or detachment of the 1 sequence enhances -oligomer formation from the globular domain, leading to aggregation. The cellular implications are that speciWc proteases may have an important role in the generation of membranebound, potentially toxic, -oligomeric PrP species in preamyloid states of prion diseases. Such species may induce cell death by lysis, and also contribute to the transport of PrP to neuronal targets with subsequent ampliWcation of pathogenic eVects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.