Recognition of the growing role of human mesenchymal stem cells (hMSC) in tissue engineering and regenerative medicine requires a thorough understanding of intracellular biochemical and biophysical processes that may direct the cell's commitment to a particular lineage. In this study, we characterized the distinct biomechanical properties of hMSCs, including the average Young's modulus determined by atomic force microscopy (3.2 +/- 1.4 kPa for hMSC vs. 1.7 +/- 1.0 kPa for fully differentiated osteoblasts), and the average membrane tether length measured with laser optical tweezers (10.6 +/- 1.1 microm for stem cells, and 4.0 +/- 1.1 microm for osteoblasts). These differences in cell elasticity and membrane mechanics result primarily from differential actin cytoskeleton organization in these two cell types, whereas microtubules did not appear to affect the cellular mechanics. The membrane-cytoskeleton linker proteins may contribute to a stronger interaction of the plasma membrane with F-actins and shorter membrane tether length in osteoblasts than in stem cells. Actin depolymerization or ATP depletion caused a two- to threefold increase in the membrane tether length in osteoblasts, but had essentially no effect on the stem-cell membrane tethers. Actin remodeling in the course of a 10-day osteogenic differentiation of hMSC mediates the temporally correlated dynamical changes in cell elasticity and membrane mechanics. For example, after a 10-day culture in osteogenic medium, hMSC mechanical characteristics were comparable to those of mature bone cells. Based on quantitative characterization of the actin cytoskeleton remodeling during osteodifferentiation, we postulate that the actin cytoskeleton plays a pivotal role in determining the hMSC mechanical properties and modulation of cellular mechanics at the early stage of stem-cell osteodifferentiation.
Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types--human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine.
The therapeutic efficacy of mesenchymal stem cells (MSCs) in tissue engineering and regenerative medicine is determined by their unique biological, mechanical, and physicochemical characteristics, which are yet to be fully explored. Cell membrane mechanics, for example, has been shown to critically influence MSC differentiation. In this study, we used laser optical tweezers to measure the membrane mechanics of human MSCs and terminally differentiated fibroblasts by extracting tethers from the outer cell membrane. The average tether lengths were 10.6+/-1.1 microm (hMSC) and 3.0+/-0.5 microm (fibroblasts). The tether extraction force did not increase during tether formation, which suggests existence of a membrane reservoir intended to buffer membrane tension fluctuations. Cytoskeleton disruption resulted in a fourfold tether length increase in fibroblasts but had no effect in hMSCs, indicating weak association between the cell membrane and hMSC actin cytoskeleton. Cholesterol depletion, known to decrease lipid bilayer stiffness, caused an increase in the tether length both in fibroblasts and hMSCs, as does the treatment of cells with DMSO. We postulate that whereas fibroblasts use both the membrane rigidity and membrane-cytoskeleton association to regulate their membrane reservoir, hMSC cytoskeleton has only a minor impact on stem cell membrane mechanics.
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 299: C218-C229, 2010. First published April 21, 2010; doi:10.1152/ajpcell.00383.2009.-Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-ketocholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDLinduced changes in endothelial biomechanics.angiogenesis; cholesterol; sphingomyelin; lipid packing OXIDIZED LOW-DENSITY LIPOPROTEIN (oxLDL) is well known to be accumulated in atherosclerotic lesions (48), and the level of oxLDL increases with hypercholesterolemia both in animal models of atherosclerosis (20, 21) and in humans (7,42). Multiple studies have shown that exposure to oxLDL results in endothelial dysfunction, including impairment of nitric oxide (NO) release (2), disruption of the endothelial barrier (14), and decrease in endothelial cell (EC) migration (32). Our studies focus on elucidating the impact of oxLDL on endothelial biomechanics and on the role of endothelial biomechanics in control of angiogenesis.Our earlier studies have shown that exposure to oxLDL significantly increases endothelial stiffness and facilitates the ability of endothelial cells to generate force (6). Furthermore, we have shown that endothelial cells freshly isolated from aortas of hypercholesterolemic pigs are significantly stiffer than cells isolated from aortas of control animals, indicating that diet-induced hypercholesterolemia results in significant changes in endothelial biophysical properties (6). Moreover, oxLDL-induced increase in endothelial stiffness and force generation is associated with an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.