We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the theory provides insight into the carrier scattering dynamics and allows us to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between nonlinear optical response and microscopic dynamics provides a powerful methodology to study quantum phase transitions in correlated materials. Further implications are light wave control over intricate quantum phases, light–matter hybrids, and application for optical quantum computing.
We report on the new non-linear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase, and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a novel strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the new theory provides insight into the carrier scattering dynamics and allows to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between non-linear optical response and microscopic dynamics provides a powerful new methodology to study quantum phase transitions in correlated materials. Further implications are light-wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing.
We report on the new non-linear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.