Almost adiabatic states are typical for the deep convective interiors of all known planets and their moons, e.g., the deviations from the adiabatic state in the Earth's outer core and in the MHD dynamo region of Jupiter are about or less than 10 À5 %. We approximated the equations governing convection in the deep interiors of planets and their moons to obtain a system, which is more accurate than the traditional Boussinesq equations. Fortunately, our system, which adopts almost uniform entropy instead of the temperature as the basic thermodynamic states, can still be investigated by standard methods. We considered the marginal stability of wellmixed almost adiabatic states in rapidly rotating thick spherical shells, whose inner to outer radius ratio does not exceed that of the modern Earth. The critical Rayleigh-type numbers, frequencies and solution structures of the marginal states were determined by both analytical and numerical methods. Our new estimates differ from those obtained previously using the Boussinesq equations, suggesting that the earlier Boussinesq results for convection in the deep planetary interiors should be re-assessed. The small molecular Prandtl number limit was adopted to model the marginal stability of thermal planetary convection. It was found that the critical Rayleigh number for convection sharply diminished as the radius of the inner rigid core is increased. We modelled the instability of the combined compositional-thermal turbulent geo-convection for Prandtl number unity. When thermal convection is in opposition to compositional convection, extremely large critical Rayleigh numbers are possible. This might happen for a terrestrial planet during its later stage of evolution. Pure compositional convection has been investigated in the large compositional Prandtl number limit, for which the critical Rayleigh number is rather large and the variations of all critical parameters are small. The large size of the critical Rayleigh number ensures that the actual values used in numerical dynamo experiments are only moderately supercritical.
Аccording to the «principles» of the theory of relativity and quantum mechanics, the existing state of the system cannot completely determine its future state, and accordingly, even in the absence of false information, it is impossible to restore the picture of the previous state. Newton’s physics and formal logic recognize only two results of any study “proved” or “not proved”, although there are four “likely”, “unlikely”, “uncertain”, “meaningless” and on this gnoseology basis it is proposed to build the institution of evidence law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.