Basin have increased winter ventilation in the ocean interior, making this region 46 structurally similar to that of the western Eurasian Basin. The associated enhanced 47 release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to 48 losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in 49 sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the 50Eurasian Basin represents an essential step toward a new Arctic climate state, with a 51 substantially greater role for Atlantic inflows. 52 53 3 Over the last decade, the Arctic Ocean has experienced dramatic losses of sea-ice loss in 54 the summers, with record-breaking years in 2007 and 2012 for both the Amerasian Basin 55 and the Eurasian Basin (EB). More remarkably, the eastern EB has been nearly ice-free 56 (<10 % ice coverage) at the end of summer since 2011 (Fig. 1). Most sea ice-mass loss 57 results from summer solar heating of the surface mixed layer (SML) through cracks in the 58 ice and open water, and consequent melting of the lower surface of the ice (1-3). Heat 59 advected into the EB interior by Atlantic water (AW) generally has not been considered 60 an important contributor to sea-ice reduction, due to effective insulation of the overlying 61 cold halocline layer (CHL) (4) that separates the cold and fresh SML and pack ice from 62 heat carried by the warm and saline AW. 63There are, however, reasons to believe the role of AW heat in sea-ice reduction is not 64 negligible, and may be increasingly important (5). Nansen (6) warming has slowed slightly since 2008 (Fig. 2c). 74Strong stratification, which is found in most of the Arctic Ocean, prevents vigorous 75 ventilation of the AW. One notable exception is the western Nansen Basin, north and 76 4 northeast of Svalbard, where proximity to the sources of inflowing AW makes possible 77 significant interactions between the SML and the ocean interior (5). Specifically, weakly 78 stratified AW entering the Nansen Basin through Fram Strait is subject to direct 79 ventilation in winter, caused by cooling and haline convection associated with sea ice 80 formation (15). This ventilation leads to the reduction of sea-ice thickness along the 81 continental slope off Svalbard (16, 17). In the past, these conditions have been limited to 82 the western EB, since winter ventilation of AW in the eastern EB was constrained by 83 stronger stratification there. However, newly acquired data show that conditions 84 previously only identified in the western Nansen Basin now can be observed in the 85 eastern EB as well. We call this eastward progression of the western EB conditions the 86 "atlantification" of the EB of the Arctic Ocean. 87 Overview of sea ice state 88The progressive decline in sea ice coverage of the Arctic Ocean during the satellite era, at 89 13.4 % per decade during September (18), has been accompanied by decreases in average 90 sea ice thickness of at least 1.7 m in the central Arctic (19, 20). In the region of t...
The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1 is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked.
Small changes in the ways that the ocean transports heat to the overlying ice cover could have a substantial effect on future changes in Arctic ice cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.