In this paper, we consider an inverse backward problem for a nonlinear singularly perturbed parabolic equation of the Burgers’ type.
We demonstrate how a method of asymptotic analysis of the direct problem allows developing a rather simple algorithm for solving the inverse problem in comparison with minimization of the cost functional.
Numerical experiments demonstrate the effectiveness of this approach.
In this paper, approaches to the numerical recovering of the initial condition in the inverse problem for a nonlinear singularly perturbed reaction–diffusion–advection equation are considered. The feature of the formulation of the inverse problem is the use of additional information about the value of the solution of the equation at the known position of a reaction front, measured experimentally with a delay relative to the initial moment of time. In this case, for the numerical solution of the inverse problem, the gradient method of minimizing the cost functional is applied. In the case when only the position of the reaction front is known, the method of deep machine learning is applied. Numerical experiments demonstrated the possibility of solving such kinds of considered inverse problems.
В работе демонстрируется, как метод апостериорной оценки порядка точности разностной схемы по Ричардсону позволяет сделать вывод о некорректности постановки (в смысле отсутствия решения) решаемой численно начально-краевой задачи для уравнения в частных производных. Это актуально в ситуации, когда аналитическое доказательство некорректности постановки ещё не получено или принципиально невозможно.
The paper demonstrates how the method of a posteriori estimation of the order of accuracy for the difference scheme according to the Richardson extrapolation method allows one to conclude that the formulation of the numerically solved initial-boundary value problem for a partial differential equation is ill-posed (in the sense of the absence of a solution). This is important in a situation when the ill-posedness of the formulation is not analytically proved yet or cannot be proved in principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.