We consider time discretization methods for abstract parabolic problems with inhomogeneous linear constraints. Prototype examples that fit into the general framework are the heat equation with inhomogeneous (time-dependent) Dirichlet boundary conditions and the timedependent Stokes equation with an inhomogeneous divergence constraint. Two common ways of treating such linear constraints, namely explicit or implicit (via Lagrange multipliers) are studied. These different treatments lead to different variational formulations of the parabolic problem. For these formulations we introduce a modification of the standard discontinuous Galerkin (DG) time discretization method in which an appropriate projection is used in the discretization of the constraint. For these discretizations (optimal) error bounds, including superconvergence results, are derived. Discretization error bounds for the Lagrange multiplier are presented. Results of experiments confirm the theoretically predicted optimal convergence rates and show that without the modification the (standard) DG method has sub-optimal convergence behavior.Key words. abstract parabolic problem, discontinuous Galerkin methods, discretization of linear constraints, optimal discretization error bounds
In this paper a time dependent Stokes problem that is motivated by a standard sharp interface model for the fluid dynamics of two-phase flows is studied. This Stokes interface problem has discontinuous density and viscosity coefficients and a pressure solution that is discontinuous across an evolving interface. This strongly simplified two-phase Stokes equation is considered to be a good model problem for the development and analysis of finite element discretization methods for two-phase flow problems. In view of the unfitted finite element methods that are often used for two-phase flow simulations, we are particularly interested in a well-posed variational formulation of this Stokes interface problem in a Euclidean setting. Such well-posed weak formulations, which are not known in the literature, are the main results of this paper. Different variants are considered, namely one with suitable spaces of divergence free functions, a discrete-in-time version of it, and variants in which the divergence free constraint in the solution space is treated by a pressure Lagrange multiplier. The discrete-in-time variational formulation involving the pressure variable for the divergence free constraint is a natural starting point for a space-time finite element discretization. Such a method is introduced and results of numerical experiments with this method are presented.
We construct four variants of space‐time finite element discretizations based on linear tensor‐product and simplex‐type finite elements. The resulting discretizations are continuous in space, and continuous or discontinuous in time. In a first test run, all four methods are applied to a linear scalar advection‐diffusion model problem. Then, the convergence properties of the time‐discontinuous space‐time finite element discretizations are studied in numerical experiments. Advection velocity and diffusion coefficient are varied, such that the parabolic case of pure diffusion (heat equation), as well as, the hyperbolic case of pure advection (transport equation) are included in the study. For each model parameter set, the L2$$ {L}_2 $$ error at the final time is computed for spatial and temporal element lengths ranging over several orders of magnitude to allow for an individual evaluation of the methods' spatial, temporal, and space‐time accuracy. In the parabolic case, particular attention is paid to the influence of time‐dependent boundary conditions. Key findings include a spatial accuracy of second order and a temporal accuracy between second and third order. The temporal accuracy tends toward third order depending on how advection‐dominated the test case is, on the choice of the specific discretization method, and on the time‐(in)dependence and treatment of the boundary conditions. Additionally, the potential of time‐continuous simplex space‐time finite elements for heat flux computations is demonstrated with a piston ring pack test case and a subtractive manufacturing test case.
The subject of this work is a new stochastic Galerkin method for second-order elliptic partial differential equations with random diffusion coefficients. It combines operator compression in the stochastic variables with tree-based spline wavelet approximation in the spatial variables. Relying on a multilevel expansion of the given random diffusion coefficient, the method is shown to achieve optimal computational complexity up to a logarithmic factor. In contrast to existing results, this holds in particular when the achievable convergence rate is limited by the regularity of the random field, rather than by the spatial approximation order. The convergence and complexity estimates are illustrated by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.