This paper suggests an evolutionary approach to design coordination strategies for multiagent systems. Emphasis is given to auction protocols since they are of utmost importance in many real world applications such as power markets. Power markets are one of the most relevant instances of multiagent systems and finding a profitable bidding strategy is a key issue to preserve system functioning and improve social welfare. Bidding strategies are modeled as fuzzy rulebased systems due to their modeling power, transparency, and ability to naturally handle imprecision in input data, an essential ingredient to a multiagent system act efficiently in practice. Specific genetic operators are suggested in this paper. Evolution of bidding strategies uncovers unknown and unexpected agent behaviors and allows a richer analysis of auction mechanisms and their role as a coordination protocol. Simulation experiments with a typical power market using actual thermal plants data show that the evolutionary, geneticbased design approach evolves strategies that enhance agents profitability when compared with the marginal cost-based strategies commonly adopted.
This article suggests an evolutionary approach to designing interaction strategies for multiagent systems, focusing on strategies modeled as fuzzy rule-based systems. The aim is to learn models evolving database and rule bases to improve agent performance when playing in a competitive environment. In competitive situations, data for learning and tuning are rare, and rule bases must jointly evolve with the databases. We introduce an evolutionary algorithm whose operators use variable length chromosomes, a hierarchical relationship among individuals through fitness, and a scheme that successively explores and exploits the search space along generations. Evolution of interaction strategies uncovers unknown and unexpected agent behaviors and allows a richer analysis of negotiation mechanisms and their role as a coordination protocol. An application concerning an electricity market illustrates the effectiveness of the approach.
This paper suggests a genetic fuzzy system approach to develop bidding strategies for agents in online auction environments. Assessing efficient bidding strategies is a key to evaluate auction models and verify if the underlying mechanism design achieves its intended goals. Due to its relevance in current energy markets worldwide, we use day-ahead electricity auctions as an experimental and application instance of the approach developed in this paper. Successful fuzzy bidding strategies have been developed by genetic fuzzy systems using coevolutionary algorithms. In this paper we address a coevolutionary fuzzy system algorithm and present recent results concerning bidding strategies behavior. Coevolutionary approaches developed by coevolutionary agents interact through their fuzzy bidding strategies in a multiagent environment and allow realistic and transparent representations of agents behavior in auction-based markets. They also improve market representation and evaluation mechanisms. In particular, we study how the coevolutionary fuzzy bidding strategies perform against each other during hourly electric energy auctions. Experimental results show that coevolutionary agents may enhance their profits at the cost of increasing system hourly price paid by demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.