Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and (15)N-edited NOESY-HSQC spectra of (13)C (15)N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time.
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.