Objective: Aim of our study is to investigate physical and chemical structure and properties of body lipids at various anatomical sites. Trial design: A pilot physical and chemical descriptive experimental trial in vitro. Methods and Participants: Adipose tissue in the amount of 252 samples from 36 individuals (17 dead females) at autopsy. The subjects had died from various injuries and were between 36-60 years old. Interventions: Chemical groups and compounds were studied on infrared spectrometry with software, and atomic adsorptive analysis on spectrometer. Elemental chemical analysis of lipids different localization carried out. Research Subject: Chemical elements and compounds. Results: The highest levels of saturated fatty acids and almost all chemical groups and compounds analysed are found in dense atherosclerotic plaque (AP). In those samples, relatively more compounds containing metabolic products were identified (P < 0.05, n = 252). Dense AP contains relatively more saturated and branched hydrocarbon chains, and they have the largest quantities of organic and inorganic elements and compounds in their structure. Conclusions: Human body lipids, especially dense AP, serve as a depot for various organic substances. Once having been formed, the AP has its own pathophysiological role in adsorption of redundant waste products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.