In order to study the dynamic behavior of ships navigating in severe environmental conditions it is imperative to develop their governing equations of motion taking into account the inherent nonlinearity of large-amplitude ship motion. The purpose of this paper is to present the coupled nonlinear equations of motion in heave, roll, and pitch based on physical grounds. The ingredients of the formulation are comprised of three main components. These are the inertia forces and moments, restoring forces and moments, and damping forces and moments with an emphasis to the roll damping moment. In the formulation of the restoring forces and moments, the influence of large-amplitude ship motions will be considered together with ocean wave loads. The special cases of coupled roll-pitch and purely roll equations of motion are obtained from the general formulation. The paper includes an assessment of roll stochastic stability and probabilistic approaches used to estimate the probability of capsizing and parameter identification.
This two-part paper deals with impact interaction of ships with one-sided ice barrier during roll dynamics. The first part presents analytical and numerical studies for the case of inelastic impact. An analytical model of a ship roll motion interacting with ice is developed based on Zhuravlev and Ivanov non-smooth coordinate transformations. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. Such approaches, however, account for the energy loss at impact times in different ways. The present work, in particular, demonstrates that the impact dynamics may have qualitatively different response characteristics to different dissipation models. The difference between localized and distributed equivalent damping approaches is discussed. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such as non-impact periodic oscillations, modulation impact motion, period added impact oscillations, I.M. Grace · R.A. Ibrahim ( ) · V.N. Pilipchuk
The damage mechanisms in sandwich plates with polymer foam cores are investigated. There has been a long-standing controversy on what is the weakest element of sandwich plates, the skin-core bonding or the foam core. Under four-point bending of a sandwich plate, we found that in all cases cracks are nucleated inside the polymer foam core as monitored by a high-speed camera. Several separated small cracks develop in the core; then the small cracks are connected and form the main crack that propagates through the core. We complemented the optical recording by the acoustic emission study which provides an additional insight in the fracture process. In addition, the influence of sub-zero temperature of the ultimate load of each material is examined at discrete values of sub-zero temperature. The results revealed that both materials become increasingly brittle with decreasing temperature.
This paper is the second part of a twopart study of impact interaction of a ship roll motion with one-sided ice barrier. The first part was devoted to analytical and numerical simulations for the case of inelastic impact. The analytical approach was based on Zhuravlev and Ivanov non-smooth coordinate transformations. Extensive numerical simulations were carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external waveinduced roll moment. The basins of attraction of safe operation revealed the coexistence of different response regimes such as non-impact periodic oscillations, modulated impact motion, period added impact oscillations, chaotic impact motion and roll-over dynamics. This part presents an experimental investigation conducted on a small ship model in a tow tank. In particular, the experimental tests reveal complex dynamic response characteristics such as multifrequency wave motion caused by the wave reflection from the tank end wall. Measured results show a good agreement with the predicted results by for small angles of the barrier relative to the ship unbiased position. However, deviation becomes significant as the angle increases. This deviation is mainly attributed to the uncertainty of the coefficient of restitution, which I.M. Grace · R.A. Ibrahim ( ) · V.N. Pilipchuk is found to depend on the velocity of impact in addition to the geometry and material properties of the model and barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.