A lift-driven vertical axis wind turbine (VAWT) generates peak power when it is rotating at high tip-speed ratios (TSR), at which time the blades encounter angles of attack (AOA) over a small range from zero to 30 degrees. However, its ability to self-start is dependent upon its performance at low TSRs, at which time the blades encounter a range of AOAs from zero to 180 degrees. A novel vented aerofoil is presented with the intention of improving the performance of a lift-driven VAWT at low TSRs without hampering the performance of the wind turbine at high TSRs. Computational fluid dynamics (CFD) simulation is used to predict the aerodynamic characteristics of a new vented aerofoil based on the well documented NACA0012 profile. Simulations are performed using the SST turbulence model. The results obtained show a reduction in the coefficient of tangential force (the force that generates torque on the wind turbine) at low AOAs (less than 90 degrees) of no more than 30%, while at high AOAs (more than 90 degrees) an improvement in the tangential force of over 100% is observed. Using a simple momentum based performance prediction model, these results suggest that this would lead to an increase in torque generation by a theoretical three-bladed VAWT of up to 20% at low TSRs and a minor reduction in coefficient of performance of up to 9% at TSR of 2 and closer to 1% at higher TSRs.
Power generation from wind energy is almost entirely performed in rural locations or at sea, and very little attention has been given to the use of wind turbines in urban locations. Since the re-emergence of wind turbines, the majority of their applications are in large commercial wind farms in rural areas or out at sea, and there is an increasing focus on the use of wind turbines within an urban environment possibly using existing structures, such as bridges and viaducts. There are very few existing buildings which have been designed from the ground-up to include wind turbines in the structure. In order to estimate the wind resources and the performance of a turbine at a particular site, a CFD model is designed and CFD calculations are performed. In order to simplify the modelling of a wind turbine actuator, disc theory is applied. Actuator disc theory is used, as it allows the aerodynamic behaviour of a wind turbine to be analyzed by just considering the energy extraction process without a specific wind turbine design. The power output of wind turbines installed beneath an already existing civil infrastructure is determined and analyzed.
The design of wind turbines requires a deep insight into their complex aerodynamics, such as dynamic stall of a single airfoil and flow vortices. The calculation of the aerodynamic forces on the wind turbine blade at different angles of attack (AOAs) is a fundamental task in the design of the blades. The accurate and efficient calculation of aerodynamic forces (lift and drag) and the prediction of stall of an airfoil are challenging tasks. Computational fluid dynamics (CFD) is able to provide a better understanding of complex flows induced by the rotation of wind turbine blades. A numerical simulation is carried out to determine the aerodynamic characteristics of a single airfoil in a wide range of conditions. Reynolds-averaged Navier–Stokes (RANS) equations and large-eddy simulation (LES) results of flow over a single NACA0012 airfoil are presented in a wide range of AOAs from low lift through stall. Due to the symmetrical nature of airfoils, and also to reduce computational cost, the RANS simulation is performed in the 2D domain. However, the 3D domain is used for the LES calculations with periodical boundary conditions in the spanwise direction. The results obtained are verified and validated against experimental and computational data from previous works. The comparisons of LES and RANS results demonstrate that the RANS model considerably overpredicts the lift and drag of the airfoil at post-stall AOAs because the RANS model is not able to reproduce vorticity diffusion and the formation of the vortex. LES calculations offer good agreement with the experimental measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.