It is shown that in the existing models of the solar cell, assumptions were made about the ideally smooth surface topography, which had a significant impact on the calculation of the output parameters. It is proposed to take into account the real working area of the receiving surface of the solar cell to improve the accuracy, linearity and stability of the current-voltage characteristics. A geometric model of the structure of the receiving surface of a solar cell has been developed, which describes and takes into account geometric changes in the structure of a semiconductor conducting layer, in the presence of damaging defects in the form of local inhomogeneities, micropores and macrocracks. It was found that the receiving surface with damaging defects is a porous inhomogeneous structure and has fractal properties: self-similarity, invariance, scalability. It is proposed to determine the real working area, to use the method of the theory of fractal geometry and, as an effective quantitative parameter for assessing the change in fractal structure, to choose the value of the fractal dimension. The obtained analytical expressions for the improved model establish the relationship between the output parameters and determine the degree of filling of the current-voltage characteristic for the output power and efficiency. The computational experiment showed that the real area can be much less than the geometric area of the topological relief and is quantitatively related to the change in fractal dimension in the range from 2.31 to 2.63. The obtained data on the real area, when solving analytical expressions for the solar cell model, play an important role in ensuring the stability and linearity of the current-voltage characteristic, increasing its accuracy up to 5 %.
This paper considers the physical processes in the structure of the material for a heat-emitting fuel element (FE) shell, caused by various damaging defects, on its outer and inner surfaces, and affecting the change in the geometric parameters of a nuclear reactor’s FE. The task to improve the model of damage to an FE shell is being solved, taking into consideration structural and phase changes in the material of the shell with damaging defects on the outer and inner surfaces, in order to establish the actual criterion for assessing the FE hermeticity degree. It is proposed to study the structure of the shell material with damaging defects (macropores and microcracks), which is a porous heterogeneous structure with fractal properties of self-similarity and scalability, to use the apparatus of fractal geometry. A physical model of the FE shell has been built and proposed, in the form of a geometric cylinder-shaped figure, which makes it possible to investigate the fractal properties of the structure of the material of the damaged shell and their influence on a change in the geometric parameters of FE An improved model of damage to the FE shell was derived, which makes it possible to take into consideration fractal increases in the geometric parameters of FE, for the established values of the fractal dimensionality. Experimental studies of the FE shell, using the skin effect, confirmed the theoretical results and showed the validity of the choice of practical use of the fractal dimensionality parameter as an effective criterion for assessing the hermeticity degree of an FE shell. It has been experimentally established that the value of the fractal dimensionality of 2.68 corresponds to the maximum degree of damage to the shell for a leaky FE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.