Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant «Promteplovoz». Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The authors developed the information-measuring system that improves the hydraulic transmission test process by automating and increasing the accuracy of measurements of control parameters. The measurement results are initial data for carrying out further studies to determine the technical condition of the hydraulic transmission UGP750-1200 during the plant post-repair tests. Practical value. The paper proposed the alternate design of microprocessor hydraulic transmission test system for diesel locomotives, which has no analogues in Ukraine. Automated data collection during the tests will allow capturing the fast processes to determine the technical condition of hydraulic transmission.
Purpose. The article provides for finding solution to the problem of developing and improving the means for measuring tachometric data of the previously created information and measuring system for testing hydraulic locomotive transmission by substantiating the optimal sensor design and signal processing algorithms. At the same time first of all it is necessary to start from the possibility of modifying the already existing test bench for hydraulic locomotive transmissions at the Dnipropetrovsk diesel locomotive repair plant «Promteplovoz». Methodology. In the work, the researchers proposed a methodology for modifying the sensor design and the algorithm for processing its signals. It is grounded on previous developments of tachometric sensor of the optical type on the basis of D-2MMU-2 sensor of the microprocessor automated test bench system of hydraulic locomotive transmission in the locomotive repair plant conditions. Selection of the necessary measurement algorithm and the number of sensor teeth is substantiated by calculating instrumental and methodological errors. Also, the studies aimed at identifying the source of interference in the measurement of rotational speed are described and solution for its elimination has been found. Findings. For the designed rotation speed sensor of the optical type based on the existing D-2MMU-2 sensor, the authors analyzed the dependence of the methodological and instrumental errors. Based on the obtained data more rational variant of the rotation speed calculation algorithm is proposed, and the number of teeth of the sensor disk is justified. Further, the main source of measurement interference was established and a method for improving the hardware of the hydraulic locomotive test bench was proposed. Originality. There were conducted the studies according to the methodological and instrumental errors of the designed rotation speed of sensor. The mechanisms of interference filtering arising from the sensor rotation speed fixing were proposed. Additional studies have shown the need for a hardware revision of signal conditioner scheme. Practical value. Conducted studies make it possible to establish a rational number of sensor disk teeth, which allows improving the measurement algorithm. It was also performed a hardware improvement of signal conditioner scheme from the sensor, helping to get rid of interferences. The results of measurements in studies are the initial data to perform further studies in order to determine the technical condition of hydraulic transmission UGP 750-1200 during factory testing after repair.
Purpose. The article considers the process of development and improvement of tachometer data collectors for the data-measuring diesel locomotive hydraulic transmission test system, which will give the possibility of obtaining the source data to conduct further studies of the technical condition of diesel locomotive hydraulic transmission. It is supposed to provide a solution to the problem of development and improvement of tachometer data measuring tools of the previously created data-measuring diesel locomotive hydraulic transmission test system, starting out from the possibility of modification of the existing locomotive hydraulic transmission test-bench at the Dnepropetrovsk Diesel Locomotive Repair Plant «Promteplovoz». Methodology. The researchers proposed in the work a method of modifying the existing tachometer sensor of the automated microprocessor system for the locomotive hydraulic transmission test-bench in the conditions of a diesel locomotive repair plant. It is applicable by substantiating the choice of the required tachometer sensor measuring method, as well as by using the necessary hardware and software to accomplish the goal with the ability to integrate into the data-measuring system for diesel locomotive hydraulic transmission testing. Findings. The available equipment of the locomotive hydraulic transmission test-bench allowed for design of the optical type speed sensor based on the existing sensor D-2MMU-2. The factory testing with the use of a sensor prototype resulted in determination of the required and sufficient sampling time for sensor operating microcontroller. Originality. The available equipment of the locomotive hydraulic transmission testbench allowed for design of the optical type speed sensor based on the existing sensor D-2MMU-2. We developed the operation algorithms for the microcontroller that processes the signals from this sensor. The sensor was factorytested. According to the data sample obtained during the tests, we showed the possibility of reducing the sensor information retrieval frequency. Practical value. The designed sensor significantly reduces the cost of development of the diesel locomotive hydraulic transmission test-bench, besides it can be used when developing similar hydraulic transmission test-benches of other wheeled vehicles and the like. The designed sensor has a greater accuracy than that of D-2-2MMU and considerably lower production cost in comparison with current tachometer sensors. The measurement results are input data to perform further studies in order to determine the technical condition of UGP750-1200 hydraulic transmission during the factory post-repair testing.
Ensuring interoperability of railway transport is possible only due to the developed information structure. Today, Ukraine uses the information-telecommunication system (ITS) of railway transport, which is based on a data communication network. The effectiveness of its work is largely determined by the routing system. The current algorithm for choosing the shortest route, which is used in the existing routing protocol (OSPF), does not always lead to an effective result. However, there is MPLS technology, which could improve the quality of the ITS network by creating virtual channels between its nodes. The authors proposed a scheme for selecting tunnels for the flows in the MPLS network, which is based on the neural model of a multilayer perceptron of configuration 18–3–3–10 with the activation function Softmax in hidden layers and a linear activation function in the input layer. To simulate the network operation, flow data is needed: class of service (CoS), sender and recipient identifiers, average flow rate vector and tunnel data (their initial load). The final load of the tunnels is taken as the resulting output of the neural network, on the basis of which the tunnel is selected for the flow of the k-th class of service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.