In this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels. Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels. Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries. The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations. The SRM-calculated stability factors were compared with observations made during the site visits, and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case. It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions. This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions. Both mines used support systems incorporating cable bolts as part of the primary support system. Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts, while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls, rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling’ action it provides. Additionally, the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts, and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof.
A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia. Monitoring was initiated a few days after development of the gateroad entries and continued during passage of the longwall panels on both sides of the entry. Monitoring included overcore stress measurements of the initial stress within the rock mass, changes in cable bolt loading, standing support pressure, roof deformation, rib deformation, stress changes in the coal pillar, and changes in the full three-dimensional stress tensor within the rock mass at six locations around the monitoring site. During the passage of the first longwall, stress measurements in the rock and coal detected minor changes in loading while minor changes were detected in roof deformation. As a result of the relatively favorable stress and geological conditions, the support systems did not experience severe loading or rock deformation until the second panel approached within 10–15 m of the instrumented locations. After reaching the peak loading at about 50–75 mm of roof sag, the cable bolts started to unload, and load was transferred to the standing supports. The standing support system was able to maintain an adequate opening inby the shields to provide ventilation to the first crosscut inby the face, as designed. The results were used to calibrate modeled cable bolt response to field data, and to validate numerical modeling procedures that have been developed to evaluate entry support systems. It is concluded that the support system was more than adequate to control the roof of the tailgate up to the longwall face location. The monitoring results have provided valuable data for the development and validation of support design strategies for longwall tailgate entries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.