The environmental corrosiveness is governed for indoor applications by the presence of gaseous pollutants in air and levels of temperature and relative humidity. Its determination is a challenging task and requires the monitoring of thickness reduction of selected metals in the range of few tens of nanometers. The present work aims at developing an UHF RFID sensor dedicated to such measurements. The sensor is based on the coupling between the antenna of a commercial RFID tag and a thin layer of copper exposed to the environment. The ability of the proposed sensor to be sensitive to a variation of the metal thickness in the range of tens of nanometers is demonstrated experimentally through exposure tests in a climatic chamber. The results are supported by electromagnetic simulations performed in the case of a coupling between a dipolar antenna and a thin metallic layer.
Wireless Networks-on-Chip (WiNoC) are being explored for parallel applications to improve the performances by reducing the long distance/critical path communications. However, WiNoC still require precise propagation models to go beyond proof of concept and to demonstrate it can be considered as a realistic efficient alternative to wired NoC. In this paper, we present accurate 3D models based on measurements in Ka band and Electromagnetic (EM) simulations of transmission on silicon substrate in the V band and the Sub-THz band. Using these EM results, a time-domain simulation is performed using an On-Off Keying (OOK) modulation based transmission with different PA/LNA configurations. Our results highlight the type of performances and tradeoffs to be considered according to different parameters such as power output and amplifier's gain. By improving the knowledge about the signal propagation, one can conduct precise design space exploration for parallel applications. We discuss the realistic channel modeling and we present also hybrid solutions and associated limitations of WiNoC architectures. We conclude the paper with research directions to be explored to make WiNoC a reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.