Apelin, which is a new hormone, is secreted especially in the brain by hypothalamus as well as by many other organs like the stomach, fat tissue, and the heart. For apelin, whose possible effects on many bodily functions like the endocrine system, cardiovascular system and metabolic activities are still under investigation, the reproductive system is also an important target area. The purpose of the present study was to investigate the effects of plasma apelin levels in rats that were in diestrus, pregnancy and lactation periods, and to examine its possible effects on myometrium contractions of pregnant rats and non-pregnant rats that were in diestrus period. The plasma apelin concentrations in female adult Wistar rats were determined with the ELISA method in the diestrus period, and on the 12th, 18th, and 21st days of the pregnancy, and on the 2nd and 10th days of lactation (n=7 for each group). In addition, the effect of apelin at 0.01, 0.1, 1 and 10 μM doses on isometric contractions in the rat uterus on the 21st day of pregnancy and in diestrus period was tested by using isolated organ bath. This protocol was repeated under conditions that were pre-treated with protein kinase C inhibitor in calcium-free medium, and the possible effect of apelin on contractions and the mechanisms that might mediate this effect were investigated. When plasma apelin levels were compared with the rats in diestrus period, the apelin concentrations in the 21-day pregnancy group were high at a significant level (p<0.05); and low at a significant level in the 2-day lactation group (p<0.05). In myometrium contraction trials, it was observed that apelin induced the contractions. Apelin increased the frequency of the myometrium contractions at a significant level when applied at 1 μM and 10 μM concentrations (p<0.05 and p<0.001). Only after the apelin application at 10 μM concentration did the amplitude of the contractions increase at a significant level (p<0.01). In the myometrium of the rats that were on the 21st day of pregnancy, the frequency of the contractions was statistically significant at 0.1 μM, 1 μM and 10 μM doses (p<0.01). In addition, the amplitude of the contractions increased at a statistically significant level at 1 μM and 10 μM dose application (p<0.05 and p<0.01, respectively). The apelin application induced the contractions in calcium-free medium. When apelin was applied after the pre-application with protein kinase C inhibitor, no contractions were observed. The present study showed that apelin levels were increased at the end of pregnancy in rats, and the hormone induced the uterus contractions. This effect does not occur with protein kinase C inhibitor and in calcium-free medium, which shows that protein kinase C pathway might play a role in these mechanism. These findings show that apelin might be an endogenous peptide that plays a role on uterine contractions at birth in rats.
Agomelatine is an antidepressant with a novel mechanism of action. It is a melatonergic agonist for MT1 and MT2 receptors and a serotonin (5-HT2C) receptor antagonist. Agomelatine has been suggested not to have adverse effects on sexual functions. However, the effects of chronic agomelatine administration on reproductive functions have not been sufficiently studied in animal models. We mainly aimed to explore the effects of agomelatine on reproductive functions in the male and female rats. For the experimental studies, Sprague Dawley rats were used. The animals started to receive daily oral agomelatine (10mg/kg) on post-natal day 21. Agomelatine advanced vaginal opening in the female rats whereas it delayed puberty onset in the male rats. Agomelatine treatment significantly decreased intromission frequencies, which indicates a facilitator role of this antidepressant on male sexual behavior. In the forced swimming test (FST) used for assessing antidepressant efficacy, agomelatine induced a significant decrease in duration of immobility, and an increase in the swimming time, respectively, which confirms the antidepressant-like activity of agomelatine. The present findings suggest that agomelatine shows a strong antidepressant effect in the male rats without any adverse influences on sexual behavior, and its effects on pubertal maturation seem to show sex-dependent differences.
In addition to its well-known effects on parturition and lactation, oxytocin (OT) plays an important role in modulation of pain and nociceptive transmission. But, the mechanism of this effect is unclear. To address the possible role of OT on pain modulation at the peripheral level, the effects of OT on intracellular calcium levels ([Ca(2+)](i)) in rat dorsal root ganglion (DRG) neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1- or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of OT on [Ca(2+)](i) and role of the protein kinase C (PKC)-mediated pathway in OT effect were assessed. OT caused a significant increase in basal levels of [Ca(2+)](i) after application at the doses of 30 nM (n = 34, p < 0.01), 100 nM (n = 41, p < 0.001) and 300 nM (n = 46, p < 0.001). The stimulatory effect of OT (300 nM) on [Ca(2+)](i) was persistent in Ca(2+)-free conditions (n = 56, p < 0.01). Chelerythrine chloride, a PKC inhibitor, significantly reduced the OT-induced increase in [Ca(2+)](i) (n = 28, p < 0.001). We demonstrated that OT activates intracellular calcium signaling in cultured rat primary sensory neurons in a dose- and PKC-dependent mechanism. The finding of the role of OT in peripheral pain modification may serve as a novel target for the development of new pharmacological strategies for the management of pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.