In this study, zinc ferrite magnetic nanoparticles (ZnFe2O4, ZFO MNPs) were employed as a sorbent for the removal of oil spill from water surfaces. ZFO MNPs were synthesized via a sol-gel process and characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Both the apparent density and magnetic force were determined. ZFO MNPs presented a considerable magnetic force (40.22 mN) and an adequate density (0.5287 g/cm3), which are important for the magnetic separation and flotation. Four oil samples (gasoline engine oil, crude oil, used motor oil and diesel engine oil) were used to investigate the gravimetric oil removal capability of ZFO MNPs. The oil sorption capacities were found to be 23.00-6.13, 27.65-7.42, 22.62-7.01 and 30.54-9.93 g/g for crude, diesel engine, gasoline engine, and used motor oil, respectively. The current findings demonstrate that ZFO MNPs exhibit good properties (e.g., magnetic and density) and can be used as a sorbent for oil spill cleaning-up from water surfaces.
Purpose The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of water pollutants. Design/methodology/approach The magnetic nano-adsorbent was synthesized via sol-gel process. Different techniques including; Fourier transform infrared spectroscopy, point of zero charge, scanning electron microscope and X-ray powder diffraction were used to characterize the prepared adsorbent. Adsorption experiments were conducted in batch mode under various conditions (contact time, shaking speed, initial dye concentration, initial solution pH, solution temperature and adsorbent amount) to investigate the adsorption capability of CFMo MNPs for CR. Findings The results showed that, CFMo MNPs could successfully remove more than 90% of CR dye within 20 min. Adsorption kinetics and isotherms were better described using pseudo-second-order (PSO) and Langmuir models, respectively. The maximum adsorbed amount (qmax) of CR dye was 135.14 mg/g. The adsorption process was found to be endothermic and spontaneous in nature as demonstrated by the thermodynamics ( ΔGo, ΔHoand ΔSo). Practical implications This study provided a good example of using an easily separated magnetic nano-adsorbent for fast removal of a very toxic organic pollutant, congo red, from the aquatic environment Originality/value The employment of Mo-doped cobalt ferrite for the first time for removing hazardous anionic dyes such as congo red from their aqueous solutions.
Purpose The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide (CTAB, cationic surfactant) magnetic nanoparticles (ZFO-CTAB MNPs). Design/methodology/approach A CTAB-assisted sol–gel method was used to synthesize ZFO-CTAB MNPs. X-ray powder diffraction and Fourier transform infrared spectroscopy were used for ZFO-CTAB MNPs characterization. Also, the magnetic force and apparent density of ZFO-CTAB MNPs were determined. The oil spill cleanup was investigated by using the gravimetric oil removal (GOR) technique, which used ZFO-CTAB MNPs as oil absorbent material and four oil samples (crude, diesel, gasoline and used oil) as oil spill models. The antibacterial activity of ZFO-CTAB MNPs against Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi) was investigated by using the optical density method. Findings The results revealed that, when the amount of ZFO-CTAB was 0.01 g, gasoline oil had the highest GOR (51.80 ± 0.88 g/g) and crude oil had the lowest (11.29 ± 0.82 g/g). Furthermore, for Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa, ZFO-CTAB MNPs inhibited bacterial growth with a higher percentage (94.24%–95.63%). Originality/value The applications of ZFO-CTAB MNPs in the cleanup of oil spills from aqueous solutions, as well as their antibacterial activity. The results showed that ZFO-CTAB MNPs are a promising material for removing oil spills from bodies of water as well as an antibacterial agent against Gram-negative bacterial strains.
Crude oil is the main economic supply in many countries. Corrosion has been considered as the first fatal factor destroying the crude oil plants such as crude oil equipment, oil wells, separation vessels, storage tanks, and pipelines. This is the main reason encouraging many companies and researchers to develop new technological methods to manipulate corrosion. In this review, we discuss the types of corrosion, corrosion control methods (chemical and non-chemical methods), corrosion removal methods and corrosion monitoring process (direct and indirect measurement of corrosion). In addition some perspectives on SRB bacteria, types of inhibitors and gases removal methods were provided.
In the present study, Zn-doped cobalt ferrite (CoFe1.9Zn0.1O4) magnetic nanoparticles were successfully synthesized via sol-gel method. The prepared materials were characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The apparent density and magnetic force of CoFe1.9Zn0.1O4 nanoparticles were determined. The results revealed that the prepared materials display an adequate density and considerable magnetic force. The gravimetric oil removal capability tests were also performed to investigate the oil absorption properties of CoFe1.9Zn0.1O4 nanoparticles using four types of oil samples (crude, diesel, gasoline and hydraulic oil) as water pollutant's model. The oil removal capabilities of the prepared absorbent were found to be 13.72 ± 0.42-5.50 ± 0.53 g/g, 14.99 ± 0.95-8.86 ± 0.42 g/g, 18.23 ± 1.01-8.06 ± 1.26 g/g and 10.58 ± 0.49-5.24 ± 0.31 g/g for crude, diesel engine, gasoline engine and hydraulic oil, respectively. The results suggest that the prepared magnetic nanoparticles can be used as absorbent materials for removing oil spills from water surface. Magnetic nanomaterials Spinel ferrite nanoparticles Oil spills Gravimetric oil removal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.