A commercial CFD package was used to simulate the 3D flow field generated in a cylindrical tank by a helical ribbon impeller. The study was carried out using a pseudoplastic fluid with yield stress in the laminar mixing region. Ultrasonic Doppler velocimetry (UDV), a noninvasive fluid flow measurement technique for opaque systems, was used to measure xanthan gum velocity. From flow field calculations and tracer homogenization simulations, power consumption and mixing time results were obtained. The torque and power characteristics remain the same for upward and downward pumping of the impeller, but the mixing times are considerably longer for the downward pumping mode. Overall, the numerical results showed good agreement with experimental results and correlations developed by other researchers. From the power and mixing time results, two efficiency criteria were utilized to determine the best pumping mode of the impeller.
Yield stress fluids are commonly encountered in the pharmaceutical, wastewater and bioprocess industries. On agitation of these fluids with an impeller, a zone of significant motion (cavern) is formed surrounded by stagnant regions. These inhomogeneous conditions are undesirable from a product quality standpoint. Therefore, to evolve a mixing system design that would eliminate these problems, experimental measurements of mixing time were obtained and combined with power consumption to provide a measure of mixing system efficiency. The effect of different parameters such as fluid rheology, impeller rotational speed, impeller type and impeller clearance on the mixing times was also investigated. In addition, using CFD, numerical mixing times were calculated and a comparison of the numerical and experimental mixing times were conducted to investigate the capability of the CFD tool to correctly predict the homogenization process in mixing tanks. In general, it was observed that the power characteristics of the different agitators were well reproduced by the computational package. In addition, CFD was able to correctly predict the effect of impeller rotational speed and fluid yield stress on the mixing times. However, the effect of impeller clearance on the mixing time was not correctly predicted by the CFD package when compared with experimental results obtained in this work as well as those obtained by other researchers. A comparison of the impellers used in this study (Pitched Blade Turbine (PBT), marine propeller and Lightnin A320) using the mixing time correlations available in the literature to fit the experimental data revealed that the PBT was superior to the other impellers in mixing yield stress fluids. In addition, the validated CFD model was used to measure the dimensions of the cavern formed around the impeller and it showed good agreement with the Elson's cavern model.
Yield stress fluids are commonly encountered in the pharmaceutical, wastewater and bioprocess industries. On agitation of these fluids with an impeller, a zone of significant motion (cavern) is formed surrounded by stagnant regions. These inhomogeneous conditions are undesirable from a product quality standpoint. Therefore, to evolve a mixing system design that would eliminate these problems, experimental measurements of mixing time were obtained and combined with power consumption to provide a measure of mixing system efficiency. The effect of different parameters such as fluid rheology, impeller rotational speed, impeller type and impeller clearance on the mixing times was also investigated. In addition, using CFD, numerical mixing times were calculated and a comparison of the numerical and experimental mixing times were conducted to investigate the capability of the CFD tool to correctly predict the homogenization process in mixing tanks. In general, it was observed that the power characteristics of the different agitators were well reproduced by the computational package. In addition, CFD was able to correctly predict the effect of impeller rotational speed and fluid yield stress on the mixing times. However, the effect of impeller clearance on the mixing time was not correctly predicted by the CFD package when compared with experimental results obtained in this work as well as those obtained by other researchers. A comparison of the impellers used in this study (Pitched Blade Turbine (PBT), marine propeller and Lightnin A320) using the mixing time correlations available in the literature to fit the experimental data revealed that the PBT was superior to the other impellers in mixing yield stress fluids. In addition, the validated CFD model was used to measure the dimensions of the cavern formed around the impeller and it showed good agreement with the Elson's cavern model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.